Show simple item record

dc.contributor.authorWanambisi, A.W.
dc.contributor.authorAywa, S.
dc.contributor.authorMaende, C.
dc.contributor.authorMuketha, Geoffrey M.
dc.date.accessioned2017-02-28T06:06:04Z
dc.date.available2017-02-28T06:06:04Z
dc.date.issued2013
dc.identifier.urihttp://hdl.handle.net/123456789/266
dc.identifier.urihttps://www.eajournals.org/wp-content/uploads/ALGEBRAIC-APPROACH-TO-COMPOSITE-INTEGER-FACTORIZATION.pdf
dc.identifier.urihttps://www.semanticscholar.org/paper/ALGEBRAIC-APPROACH-TO-COMPOSITE-INTEGER-Muketha/917fc710981859f727e06c4d7b0d4c6236af0f8e
dc.description.abstractThere various algorithms that can factor large integers but very few of these algorithms run in polynomial time. This fact makes them inefficient. The apparent difficulty of factoring large integers is the basis of some modern cryptographic algorithms. In this paper we propose an algebraic approach to factoring composite integer. This approach reduces the number of steps to a finite number of possible differences between two primes.en_US
dc.language.isoenen_US
dc.subjectalgorithmen_US
dc.titleALGEBRAIC APPROACH TO COMPOSITE INTEGER FACTORIZATIONen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record