• Login
    View Item 
    •   MUT Research Archive
    • Journal Articles
    • School of Pure, Applied and Health Sciences (JA)
    • Journal Articles (PAS)
    • View Item
    •   MUT Research Archive
    • Journal Articles
    • School of Pure, Applied and Health Sciences (JA)
    • Journal Articles (PAS)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Effect of growth temperature on the structural, optical and luminescence properties of cadmium telluride nanoparticles

    Thumbnail
    View/Open
    Full Text (107.1Kb)
    Date
    2018-01
    Author
    Kiprotich, Sharon
    Onani, M. O.
    Dejene, B. F.
    Metadata
    Show full item record
    Abstract
    Cadmium telluride (CdTe) has been successfully prepared by a simple wet chemical process at different reaction temperatures. Temperature is one parameter that thermodynamically plays an important role in controlling the growth rate, morphology, size and size distribution of the as-prepared nanoparticles (NPs). Effect of this parameter was investigated on the growth, structural and optical properties of CdTe NPs. It was observed that the Powder X-ray diffraction (XRD) pattern for samples prepared at 50 °C had many impurities from unreacted precursors while those prepared at > 100 °C displayed polycrystalline NPs. The XRD results revealed that the structure of the CdTe NPs was cubic with the planes (111), (220), (311) being the main observed peaks. The crystallite sizes obtained from Scherrer formula increased with the increase in growth temperature (2.86–3.62 nm grown at 50–200 °C respectively). The scanning electron microscopy micrographs showed that the morphology of the nanoparticles possessed spherical-shaped particles over the entire surface. This was further confirmed by high resolution transmission electron microscopy micrographs which also displayed increase in the particle size with an increase in the growth temperature. In the optic study, the photoluminescence (PL) spectra displayed a red shift (540–560 nm) in emission as growth temperature increased from 50 to 200 °C. The highest PL peak intensity was realized at a growth temperature of 150 °C. Absorption band maxima were observed to shift towards longer wavelength for higher growth temperatures. The optical band gap decreased with increase in the growth temperature from 2.67 to 2.08 eV for 50–200 °C respectively.
    URI
    https://repository.uwc.ac.za/handle/10566/3407
    https://link.springer.com/article/10.1007/s10854-018-8574-6
    https://www.researchgate.net/publication/322508038_Effect_of_growth_temperature_on_the_structural_optical_and_luminescence_properties_of_cadmium_telluride_nanoparticles
    https://www.x-mol.com/paper/1335504738212868274?recommendPaper=5747136
    http://hdl.handle.net/123456789/4628
    http://dx.doi.org/10.1007/s10854-018-8574-6
    Collections
    • Journal Articles (PAS) [273]

    MUT Library copyright © 2017-2024  MUT Library Website
    Contact Us | Send Feedback
     

     

    Browse

    All of Research ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    MUT Library copyright © 2017-2024  MUT Library Website
    Contact Us | Send Feedback