• Login
    View Item 
    •   MUT Research Archive
    • Journal Articles
    • School of Pure, Applied and Health Sciences (JA)
    • Journal Articles (PAS)
    • View Item
    •   MUT Research Archive
    • Journal Articles
    • School of Pure, Applied and Health Sciences (JA)
    • Journal Articles (PAS)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Natural Convection in a Rectangular Enclosure with Colliding Boundary Layers

    Thumbnail
    View/Open
    Natural Convection in an Enclosure.pdf (358.9Kb)
    Date
    2014
    Author
    Mutuguta, John W.
    Metadata
    Show full item record
    Abstract
    The movement of the fluid in natural convection results from the buoyancy forces imposed on the fluid when its density in the proximity of the heat transfer surface is decreased as a result of the heating process. The objective of this paper is the computational study of the flow initiated by natural convection. The problem being investigated is the colliding boundary layer in a rectangular enclosure. The dimensional governing equations are first transformed to non-dimensional equations. The purpose of this transformation is to reduce the effort required to make a study over a range of variables. A non-dimensional scheme was chosen which led to improved iterative convergence for faster transients. The three dimensional analogue of the stream function-vorticity formulation was used where the scalar vorticity was replaced by a vector and the scalar stream function by a86 Natural Convection in a Rectangular Enclosure with Colliding Boundary Layers vector potential. The equations were then solved using the method of variable false transients. The results indicated that the flow region is stratified into three regions; a cold upper region, a hot region in the area of the confluence of hot and cold streams and a warm lower region.
    URI
    http://hdl.handle.net/123456789/1387
    http://www.scienpress.com/Upload/JAMB/Vol%204_2_5.pdf
    Collections
    • Journal Articles (PAS) [273]

    MUT Library copyright © 2017-2024  MUT Library Website
    Contact Us | Send Feedback
     

     

    Browse

    All of Research ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    MUT Library copyright © 2017-2024  MUT Library Website
    Contact Us | Send Feedback