http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Jownal 9 (7): 1317-1326, 2010
ISSN 1812-5638
© 2010 Asian Network for Scientific Information

Complexity Metrics for Executable Business Processes

G M. Muketha, 'A.A.A. Gham, 'M.H. Selamat and 'R. Atan
"Department of Information Systems, Faculty of Computer Science and Information Technology,
University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
“Department of Computer Science, Faculty of Science,
Masinde Muliro University of Science and Technology, P.O. Box 190-50100 Kakamega, Kenva

Abstract: In this study, seven metrics are proposed for measuring the complexity of Executable Business
Processes (EBP). The metrics are either derived from existing business process metrics or adapted from software
metrics. Evaluation was carried out in three case studies with the goal of finding out if the metrics are
theoretically sound and at the same time intuitional. In case 1, metrics values were computed from three
processes and then analyzed to check whether they agree with reality. In case 2, the metrics were grouped into
two categories of length and complexity and then separately checked for their conformance to Briand’s
framework. In case 3, all the metrics were treated under one complexity category and then checked for thewr
conformance to Weyuker’s properties. Results indicate that the new metrics are intuitional and are good 1f used
in their respective categories, or when used together to complement each other in order to give a fuller view of

process complexity.

Key words: BPEL, cognitive complexity, information flow, structural complexity, complexity metrics

INTRODUCTION

Many people m industry and academia have in recent
vears shown a lot of mterest 1 business processes
created using the Business Process Execution Language
(BPEL). Several researchers have attributed BPEL’s
mcreased demand to the fact that it has richer semantics
than most other busmess process modeling languages
(Charfi and Mezini, 2007) and that it is quickly becoming
the de facto industry standard for Web services
composition and execution (Modatteri and Conforti, 2006,
Zheng et al., 2007).

In recent years, there has been a shift from the
graphical process modeling to executable service-oriented
process programming, which should affect how business
processes are defined (Lindsay et al., 2003). According to
Michelson (2005), a BPEL process is a long-running
service, coordinating the actions of multiple parties
through a series of work steps. Parties are partner Web
services while steps are the activities needed to
coordinate services. Web services depend on the ability
of often heterogeneous parties to communicate with each
other (Misra et af., 2006). Formally, a BPEL process P may
be defined as a 2-tuple <E, R>, where, E 1s the set of basic
activities in the process and R is the set of control-flow
relations that connect one activity to another. This

definition is based on Briand’s work on modular software
systems, where, a program may consist of several
procedures, functions or classes (Briand et al., 1996).
Unlike in the case of software, BPEL lacks sufficient
modularity features (Charfi and Mezini, 2007). Tt is
possible however, to partition a process alongside
control-flow boundaries such that each control-flow block
15 treated as a module. Furthermore, some simple
processes contain only one control-flow structure and
can also be treated as modules.

The problem with BPEL processes, also called
Executable Business Processes (EBP) 1n this study, 1s that
they can get highly complex with age (Cardoso, 2006).
Some of complexity include the
introduction of new activities to accommodate new
partners and dynamic partner links which can only be
determined at run time. High complexity in EBP makes
them difficult to understand, analyze and modify
{Cardoso, 2006) and consequently, difficult to maintain
(Canfora et al., 2005). High complexity 1s therefore
undesirable and should be measwed for purposes of
controlling it. Parthasarathy and Anbazhagan (2006)
argued that if used properly, metrics allow us to quantify
success or failure, improvement and make useful
managerial decisions concerning software or processes.
However, very few business process metrics have

known causes

Corresponding Author: Geoffrey M. Muketha, Department of Information Systems,
Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Malaysia
Tel: +6 017 369 8350 Fax: +6 03 8946 6577
1317

Inform. Technol J., 9 (7): 1317-1326, 2010

appeared in literature to date probably because this is still
cited
business process metrics may be found in the works of
Cardoso et al. (2006), Cardoso (2006) and Gruhn and Laue
(2006). A few of these metrics were designed for
graphically modelled processes and are therefore not
directly applicable to EBP. Clearly, new metrics are needed
not only to measwre business processes, but more
specifically, to measure EBP complexity.

In this study, seven metrics are proposed with the
goal of measuring the complexity of EBP. In order to
achieve this goal and also in line with recent business
process research trends, the methodology used in this
study is to derive new metrics from either existing
business process metrics, or from related software metrics
through adaptation. Other researchers who have used
adaptation method include Cardoso et al. (2006), Cardoso
(2006) and Gruhn and Laue (2006). Adaptation of software
metrics 18 made possible by the fact that there are many
similarities between software programs and business
processes (Vanderfeesten et al, 2007, Cardoso et al.,
2006). This method is advantageous in that technology
can be reused without reinventing the wheel. For instance
i BPEL, basic activities correspond to simple program
statements such as procedure calls, assignment
statements etc. while structured activities correspond to
program control-flow statements such as sequence,
branch, iteration etc. Some of the metrics presented here
fall under structural and cognitive complexity categories
while others fall under length and information flow
categories. A description of categories of complexity
metrics may be found m the work of Koh et al. (2008).
Three BPEL processes are given to illustrate how the new
metrics can be computed. The metrics were also validated
theoretically using two complimentary case studies where,
they were checked for conformance to Briand's framework
(Briand et al., 1996) and to Weyuker's properties
(Weyuker, 1988).

In Cardoso et al. (2006), are proposed several length
metrics such as the Number of Activities (NOA) and the
Number of Activities and Control-flows (NOAC) to
measure process length. These metrics are business
process adaptations of the Lines of Code (LOC) metric in
software engineering. These metrics are however, limited
in that they fail to show the length of individual
control-flow blocks. Hence, they lack
mnformation that process designers need to know, for
example, when to redesign a large control-flow block.

Other metrics that influenced this work include the
Shepperd metric (Ince and Shepperd, 1989) and its
predecessor, the information flow metric (Hemry and
Kafura, 1981). The Shepperd metric 1s computed as a

a fairly new research area. Some frequently

sufficient

square of the product of fan-in and fan-out information
flows. These authors define fan-in as the information
flows terminating at a module and fan-out as the
information flows leaving a module. The formula for the
original information flow metric of a module (M) = length
{(M)* ((fan-in (MD* fan-out (M))’. A metric called interface
complexity (IC) has been proposed as the business
process adaptation of the original information flow metric
(Cardoso et al, 2006). Shepperd refined the original
metrics so that the complexity of a module (M) = ((fan-in
(M)* fan-out (M)">. The refined metric prevented blurring
with control-flow and concentrated purely on information
flow (Ince and Shepperd, 1989). The Shepperd metric’s
potential usefulness to business process measurement
has not been investigated yet.

Another important metric s the Cogmitive Functional
Size (CF3) for software (Shao and Wang, 2003). Harlier
studies by Wang that influenced CFS include Wang
(2002, 2003). CFS 18 computed by multiplying cogmtive
weights assigned to control-flows with total input and
output information flows. Cognitive weights of 1, 2, 3 and
4 are assigned to sequence, branch, loop and parallel
structures respectively (Shao and Wang, 2003).
According to Shao and Wang (2003), cognitive
complexity is the ease of understandability of a model.
Understanding how the human memory works can help us
to determine the mental effort that a designer needs in
order to understand a particular umt of information. Gruhn
and Laue (2006) have already made an effort to adapt CFS
for business processes. However, Gruhn and Laue (2006)
work focuses on graphically modeled processes and
therefore does not utilize input and output information
flows found in the original CFS metric. As a consequence,
this metric cannot be effectively used for measuring the
cognitive complexity of EBP.

Tom et al. (1999) have proposed the Structural
Complexity (SC) metric for software, which is computed by
multiplying the length of a program block by the
complexity weight of 1its control-flow structures.
Complexity weights are used to obtain structural
complexity. Torm et al. (1999) assigned complexity weights
of 1.1, 1.3 and 1.5 to sequence, branch and loop structures
respectively. Further empirical validation studies on this
metric have been undertaken by Costea (2007). The
difference between the SC and the CFS metrics is that SC
is a function of control-flow weights and length of a
software module while CFS 1s a function of control-flow
weights and total mput and output mformation flows.
There is also some difference in the weights assigned to
control-flow blocks, but generally, both SC and CFS
recognize lteration as being more complex than branching,
which 1s more complex than sequence. Although, the SC

1318

Inform. Technol J., 9 (7): 1317-1326, 2010

metric for software looks promising, it requires some
adaptation before it can be used for EBP measurement.

IDENTIFICATION OF MEASUREMENT ATTRIBUTES

This section describes a list of attributes to be
measured from a BPEL process. The attributes are divided
into two levels: process level and structured activity level.
The attributes to be measured include:

s Process-level attributes

» Length of process (number of basic activities)

» Length of process (number of structured
activities)

» Information flow complexity of process

» Cognitive complexity of process

» Structural complexity of process
+ Structured activity-level attributes

» Average length of structured activity
s Average cognitive complexity of structured
activity

METRICS DEFINITION

Process-level metrics

Number of Basic Activities in a process (NOBA): NOBA
metric 1s a length metric that counts the number of basic
activities 1 a process. Length is a simple one-dimensional
metric, unlike other complexity metrics which manipulate
two or more dimensions of a process.

Number of structured activities in a process (NOSA):
NOSA metric is another simple one-dimensional length
metric similar to NOBA. However, instead of counting
basic activities, 1t counts the number of structured
activities in a process. It should be noted that NOSA
simply counts the munber of structured activities but
does not attach any weights to them.

Information Flow complexity for Business Process
(IF4BP): TF4BP metric is a business process adaptation of
Shepperd metric (Tnce and Shepperd, 1989). In EBP, fan-in
is represented by input activities while fan-out is
represented by output activities. The TF4BP of a BPEL
module is defined as the square of the product of the
Number of Input Activities (NOTIA) and the Number of
Output Activities (NOOA) contained m 1t. This 15 shown
mEqg 1

TF4BP, = (NOTA *NOOAY’ (1)

where, m 1s a BPEL module.

For a large process with several BPEL modules, a
summation of the complexities of all modules contained in
the process 1s obtamned as shown in Eq. 2:

IFABP = ¥ IFABP, (2

m=l

where, n 1s number of modules in the process and m 1s a
BPEL module.

Cognitive Complexity for Business Process (CCBP):
CCBP metric is a business process adaptation of the
cognitive functional size measure (Shao and Wang, 2003).
It is a function of the total NOIA and NOOA and the total
cognitive weight (W) of the structured activities in a
process. Table 1 shows the cognitive weights assigned to
each category of control-flow structures. Assignment of
these weights represents the psychological effort needed
by a designer to comprehend a control-flow block of the
process.

To calculate CCBP, a summation of cognitive weights
(W) for all structured activities in the process is obtained
and then multiplied by the total input and cutput activities
as shown in Eq. 3:

CCBP = (NOIA + NOOA)* W, (3)

Structural Complexity of Business Process (SCBP):
SCBP is a business process adaptation of the SC metric
for software (Tarm et al., 1999). SCBP is a function of two
attributes called average structural complexity and
process length. The SCBP of a process P is the product of
its length and its average structural complexity. As shown
in Eq. 4, I(P) 1s the total length of the process and asc(P)
15 the total average structural complexity of all
control-flow structures in the process:

SCBP=I(P)*asc(P) (4)

Understanding I(P): Measuring the length of a software
program is different from measuring the length of a
process. The length of a software program can be

Table 1: Assigning weights to categories of control-flow structures

Category Activity W,
Sequence Sequence 1
Branch if, pick, 2
Loop while, for each, repeat until 3
Parallel Flow 4

1319

Inform. Technol J., 9 (7): 1317-1326, 2010

Table 2: Formulas for categories of control-flow structures

Table 3: Assigning weights to categories of control-flow structures

Category Fonmula Description Category Activity asc
Sequence asc (P, Ps,... P,) = ascaasc (Py, Py,... Py dopy, p2Pa Sequence Sequence 1.1
Branch asc (ify = ascgasc (b, p, q), Pa,....P, it'b then p else q Branch if, pick 1.3
Loop asc (while) = asc,asc (b, p) while b do p Loop while, forEach, repeatUntil 1.5
Parallel asc (flow) = ascgasc (b, p, @ ifb then p and q Parallel Flow 1.7

conveniently measured by counting its lines of code.
However, since process statements are called activities,
the length of a process can be measured by counting the
nmumber of activities contained in it. The simplest process
has at least one structured activity a few basic activities.
A length of 1 is assigned to each basic activity. This
means that a process with one structured activity that
encloses two basic activities will have a length of 2 i.e,,
1(P) = 2, where, P is a process. Length is additive, hence,
a process with three basic activities will have a length I(P)
of 3.

Understanding asc(P): Structural complexity 1s additive
(Tom et al., 1999), therefore, for a process with many
umts P = {p, ps ..., pu}, the average structural complexity
asc(P) is calculated as the average of the individual umts
of complexity as shown in Eq. 5:

S 1) asc(p)
asc(P) = asc(P,P,....P)=t —)]

Sie)

Tom et al (1999) also define the formulas for
calculating complexities for sequence, branch and loop
control structures. These formulas were extended in order
to cater for BPEL s parallel structure as shown in Table 2.

Toérn et al. (1999) proposed complexity weights of 1.1,
1.3 and 1.5 for sequence, branch and iteration structures
respectively, based on the assumption that each centrol
structire has an mherent complexity. Additionally,
Torn et al. (1999) follows the intuition that a sequence 1s
less complex than a branch which 1s less complex than a
loop. Unlike 1 the case of CCBP metric where, a weight of
1 is assigned to a sequence, Térm et al. (1999) proposes
that a weight of 1.1 be assigned to a sequence instead.
The justification for this type of weight is that a sequence
contains ordering information for its elements (i.e., a
sequence is a set of ordered elements) and is therefore
more complex than a collection (which is a set of
unordered elements). This 1s in recognition of the fact that
ordering does mn fact introduce extra cost to the existing
set. Torm’s imtial values for sequence, branch and
iteration were extended with a new weight of 1.7 to cater
for BPELs parallel structure. The reason for assigmng a
heavier weight for parallel processing 1s that in addition

to executing activities in parallel, results must also be
synchromzed. The extended weights are
Table 3.

shown 1n

Applying the formulas to compute the SCBP of
structured activities: When applying the formulas to
compute BPEL
represented i node notation as described in Table 3.
Next, the node notation of each atom is substituted with

structures, atomic nodes are first

values for its | and asc. A BPEL process has two types of
atomic nodes:

» Decision nodes-includes branch, loop and parallel
structures

¢+ Simple statement nodes-includes basic activities
appearing in a sequence structure

Decision nodes are represented as (b 1, asc,), where,
1, and asc, are the length and complexity of the activities.
Similarly, simple statement nodes are represented as
(nl,asc,), where, |, and asc, are the length and complexity
of the activities in sequence.

Examples: Computing SCBP of structured activities in the
process.

Here, several examples on how to calculate the SCBP
of BPEL processes are given.

SCBP for sequence processing: The SCBP of a sequence
S with two basic activities is calculated by first
representing it using the node notation sequence formula
and then substituting the formula as shown below:

S(nl, asc,) (nl, asc,), where, a 1s an atomic activity

=(3(nl 1)(n1 1)), substituting formula

=(n 2 1.1), add lengths of the two atoms, substitute
complexity weight of atom with that of sequence

=2*1.1 = 2.2, apply the formula for structural complexity

Therefore, 1 =2, asc=1.1 and SCBP = 2.2.

SCBP for branch processing: The SCBP of a branch with
one decision node and two basic activities invoke and the
following structure if condition then invoke B, is
calculated as follows. First represent it using the
decisions formula and then substitute the formula as
shown below:

1320

Inform. Technol J., 9 (7): 1317-1326, 2010

if(b 1, asc,) (n 1, asc,) (n 1, asc,), where, a is an atomic
activity

=@fb1 Dn1 D (nl 1y

=(n31.3*%(1+1+1)/3)

=(n31.3)

=3*13=39

Therefore, 1= 3, as¢c = 1.3 and SCBP = 3.9.

SCBP for loop processing: The SCBP of a loop with one
decision node and one basic activity and the following
structure while condition then invoke B, 1s calculated as
follows. First represent it using the decisions formula and
then substitute the formula as shown below:

do(b 1, asc,) (n1, asc,), where, a is an atomic activity
=(do(b11)nl1l)

=(n21.5%1+1¥2)

=(n21l.5)
=2%1.5=3
Therefore, 1 =2, asc = 1.5 and SCBP = 3.

SCBP for parallel processing: The SCBP of a parallel
structure with one decision node two basic activities to be
executed in parallel and the following structure if
condition then invoke A and B, is calculated as follows:
First represent it using the decisions formula and then
substitute the formula as shown below:

flow(b 1, asc,) (n 1, asc,) (n 1, asc,), where, a is an atomic
activity

=(flowb11)nl1l)(nl1l)

=(n31.7*(1+1+1)/3)

=n317)

=3%¥1.7=51

Therefore, 1=3, as¢c=1.7 and SCBP = 5.1.

Structured activity-level metrics

Average Length of Structured Activity (ALSA): The
metric ALSA is a ratio between basic activities and
structured activities mn the process. It calculates the
average length of structured activities in a process. Since,
structured activities in BPEL are treated as equivalent to
modules, then ALSA metric 15 equivalent to calculating
average module size in software engineering. Information
from ALSA would help designers to for example, decide
when to redesign the process. ALSA is computed by
dividing the number of basic activities with the number of
structured activities in the process as shown in Eq. &

ALSA =NOBA/NOSA (6)

Average Cognitive Complexity of Structured Activity
{ACCSA): The metric ACCSA 1is derived from CCBP. It 1s
the ratio between CCBP and the total number of
structured activities in the process. As in the case of
ALSA, ACCSA provides useful information to designers
that can help to determine when to redesign the process.
ACCSA 13 computed by dividing the cognitive complexity
with the number of structured activities in the process as
shownin Eq. 7:

ACCSA = CCBP/NOSA (7

RESULTS

This section presents evaluation results obtamed from
three case studies. Case 1 involved computing of the
metrics values for three BPEL processes and its aim was
to find out whether the metrics values were intuitional.
Cases 2 and 3 were complementary theoretical validation
studies whose goal was to establish the theoretical
soundness of the metrics. In case 2, the metrics were
checked for conformance to Briand's framework
(Briand et al., 1996) and in case 3, they were checked for
conformance to Weyuker’s properties (Weyuker, 1988).

Case 1: Computing metrics values for three BPEL
processes: Here, the new metrics are used to calculate the
lengths and complexities of three BPEL processes. In
Fig. 1, the Loan Eligibility Process receives a loan request
from a customer. The process then checks if the customer
is eligible for the loan. The results are used to accept or
reject the application. The appropriate message 1s finally
sent back to the customer.

eligibility

<aggign 1> || <assign
copy accept || copy m_]ect
message message

Fig. 1: Loan eligibility process

1321

Inform. Technol J., 9 (7): 1317-1326, 2010

([<mvoke>
check campus

Fig. 2: Two interacting processes to facilitate new student
admission. (a) New Student Process and (b)
Admission Process

Figure 2 shows two interacting but otherwise
different processes. Figure 2a 13 a new student process
that can be used as an entry pomt by a prospective
student to apply for university admission. This simple
process receives a new student request for admission and
then mnvokes the umversity admissions process in Fig. 2b.
The new student process waits for confirmation of
admission from admission process, after which it
terminates. Thus, the new student process is treated as a
client of admission process. After receiving a request from
the new student process, the admission process mnvokes
three Webs services in parallel. The first Web service
provides information on the student’s previous institution
for confirmation of student’s academic record, the second
Web service provides mformation on the student’s bank
account to confirm that the student has the financial
capability to undertake the course and the third Web
service provides information on whether there is on-
campus accommodation for the new student. All these
three issues must be satisfied before confirmation of
admission can be sent back to the prospective student.

Metrics values for the three processes are presented
mn Table 4. The calculations are done with the
understanding that LoanEligibilityProcess has two
structured activities {(an if and a sequence),
NewStudentProcess has one structured activity (a
sequence) and AdmissionProcess has two structured
activities (a flow and a sequence).

Case 2: Validating metrics with Briand’s generic
measurement framework: Bniand’s framework proposed
five metrics categorizes, namely, size, length, complexity
and coupling and cohesion (Briand et al., 1996). The new
metrics were grouped mto two categories: length and
complexity. NOBA, NOSA and ALSA metrics were

Table 4: Vahies of metrics for the three processes

Loan eligibility New student. Admission
Metric process process process
NOBA 5.0 3.0 5.0
NOSA 2.0 1.0 2.0
IF4BP 4.0 4.0 16.0
SCBP 7.2 33 9.0
CCBP 9.0 3.0 25.0
ALSA 2.5 3.0 2.5
ACCSA 4.5 3.0 12.5

validated under length category while IF4ABP, CCBP,
ACCSA and SCBP metrics were validated under
complexity category. Before validation commenced, an
effort was made to map the length and complexity
categories of Briand’s framework mto business process
perspective. Other categories were left out because they
are not related to the metrics proposed in this study.
Mapping was necessary because the framework was
iitially intended to be used mn the software engineering
field.

Length of the process: The length of a process P s a
function Length(P) that 1s characterized by the following
five properties.

Length 1: Nonnnegativity. The length of a process
P = <E, R> cannot be negative, but can be null if a system
has got no elements, i.e., Length (P)=0.

Length 2: Null value. The length of a process P = <E, R>
15 mull if P 18 empty 1.e., if P has got no activity nodes m it.

Length 3: Nonincreasing monotonicity for connected
components. Let P be a process and m be a module of P
such that m is represented by a connected component of
the graph representing P. Adding relationships between
elements of m does not increase the length of P, ie,
(P = <E, R> and m = <E_, R,> and mcP) and m" is a
comnected component of P" and P'=<E, R"> and R' =
Rui<e, e>}t and <e, e>¢R and erfE, and
e,cE,,,=Length (P).>Length (P").

Length 4: Nondecreasing monotomcity for non
connected components. Let P be a process and m,; and m,
be two modules of P such that m, and m, are represented
by two separate connected components of the graph
representing P. Adding relationships from elements of m,
to elements of m; does not decrease the length of P i.e.,
(P=<E,R>andm, = <E_,, R, and m, = <Em,, Rm,> and
m,cP and m,cP" are separate connected components of P"
and (P' =<F, R"> and R'=Ru{<e, e;>} and <e,, e,>¢R and
e,fE,, and e,cE,_ =Length (P).>Lengrh (P').

1322

Inform. Technol J., 9 (7): 1317-1326, 2010

Table 5: Summary of results of length metric validated with Briand’s

Table ¢: Swnimary of results of complexity metrics validated with Briand’s

framework framework
Property NOBA NOSA ALSA Property IF4BP CCBP SCBP ACCSA
Length 1 ' ' ' Complexity 1 v v v '
Length 2 v v v Complexity 2 v v v v
Length 3 ' ' ' Complexity 3 v v v '
Length 4 v v v Complexity 4 v v v v
Length 5 v v v Complexity 5 v v v v

v Ratisfied property

Length 5: Disjoint modules. The length of a process
P = <E, R> composed of two disjoint modules m,, m, is
equal to the maximum of the lengths of m, and m, 1ie,
P = mum, and mrm,=¢andE= E_uE_,= Length
(P) = max {Length (m,), Length (m,)}.

The metrics NOBA, NOSA and ALSA satisfied the
five length requirements as specified m Briand’s
framework. This means their values cannot be negative,
can be null if empty and are neither increased nor
relationships between two
connected components are added. Also, the length of two
disjomt modules m a process 1s equal to the maximum of
the lengths of the two modules. A summary of these
results is shown in Table 5.

decreased whenever

Complexity of the process: The complexity of a process P
is a function complexity (P) that is characterized by the
following five properties.

Complexity 1: Nomnnegativity. The complexity of a
process P = <FE, R> cannot be negative, but can be null if
a system has got no elements i.e., Complexity (P)=0.

Complexity 2: Null value. The complexity of a process
P = <, R> is null if the R is empty i.e., if P has got no
structured activities in it, then its complexity 18 null 1.e,

R = ¢=Complexity (P)= 0.

Complexity 3: Symmetry. The complexity of a process
P = <K, R>> does not depend on the convention chosen to
represent the relationships between its elements 1.e.,
(P = <E, R and P! = <E, R~ >)=Complexity (P) =
Complexity (P,

Complexity 4: Component monotonicity. The complexity
of a process P = <E, R> 18 no less than the sum of the
complexities of any two of its modules with no
relationships in common ie., (P =<K, R>and m, = <E,,,
R_zandm,=<E_, R_>and mum,cPand R _nR_, = p=
Complexity (P)>Complexity (m,) + Complexity (m,).

Complexity 5: Digjoint module additivity. The complexity
of a process P = <E, R> composed of two disjoint modules
m,, m, 18 equal to the sum of the complexities of the two

v Satistied property

components i.e., (P = <E, R and P = m,.m, and m,~m, and
= complexity (P) = Complexity (m,) + Complexity (m,).

The complexity metrics [FABP, CCBP, SCBP and
ACCSA satisfied the five complexity properties as
specified in Briand’s framework. This means that they
cannot be negative, can be null if empty and de not
depend on the convention used to represent the
relationships. In addition, they always return a complexity
value of a process that is greater than or equal to the sum
of any two of its components. Finally, a process
composed of any two disjoint components has the same
complexity to that of the sum of the complexities of its
components. A summary of these results is shown in
Table 6.

Case 3: Validating metrics with Weyuker’s properties:
Weyuker proposed nine properties for validating
complexity metrics (Weyuker, 1988). There is a large
number of metrics that have been validated with
Weyuker’s properties such as Cardoso (2005) and Misra
(2007). In this study, Weyuker’s properties were used to
validate all the new metrics despite the fact that they were
mtially intended to validate only complexity metrics
(Weyuker, 1988). The motivation here was to complement
results in case 1 and also to find out how the metrics
NOBA, NOSA and ALSA would fare when compared to
multi-dimensional metrics such as CCBP and SCBP, given
the fact that process length (count of number of activities)
has been categorized by Cardoso as a form of complexity,
or more precisely, activity complexity (Cardoso, 2006).

Property 1: (3P) (3Q(|P|#|Q|: There exist processes P
and Q such that [P| is not equal to |Q| This property
requires that a good metric should be able to discriminate
between two different processes such that they do not
return same measurement results.

The metrics NOBA, NOSA, ALSA, TF4BP, CCRP,
SCBP and ACCSA always retirn a different complexity for
any two non i1dentical processes where, either the mumber
of basic activities or type of decision node 1s varied.
Therefore, they all satisfied Property 1.

Property 2: Let, ¢ be a non-negative number. Then there
are only finitely many processes of complexity ¢. This

1323

Inform. Technol J., 9 (7): 1317-1326, 2010

property asserts that a changing process must also cause
a change to its complexity. NOBA, NOSA, ALSA, CCRP,
SCBP and ACCSA can detect changes in complexity when
the number of basic activities 1s wvaried and type of
decision node is kept constant. However, TF4BP can
detect changes in complexity when number of input and
output variables 1s varied, but cannot detect change in
complexity when decision type 1s vaned. Therefore, all the
proposed metrics satisfied Weyuker’s Property 2 except
TF4BP.

Property 3: There exist distinet processes P and Q for
which [P| = |Q|. This property asserts that there exist two
different processes whose effect is identical ie., two
different processes with identical values. For example, two
processes could differ only m the naming of variables but
may otherwise define the variables with the same data
type and value. According to Weyuker, a good metric
should return same complexaty for such processes.

Two processes P and @ will have the same
complexity provided that they are identical in terms of
structure, length and interface. Therefore, this property
held true for all proposed metrics.

Property 4: (IP) (3Q (P=Q and |P|#|Q|): There exist
processes P and Q such that the external effect of P and
(Q are identical, but |P| 18 not equal to |Q|. This property
asserts that two processes could look 1dentical externally
but indeed be different in their internal structure. A good
metric should be able to look beyond the external features
and discriminate two metrics based on their internal
structure. According to Weyuker, processes could
execute the same function but differ in their
mnplementation and therefore metrics that are
implementation independent satisfy this property
(Weyuker, 1988).

Two processes with same number of basic and
structured activities can return different values for the
proposed metrics if decision node types are changed. In
addition, IF4BP can detect different values 1f inputs and
output variables are altered. Therefore, all the proposed
metrics satisfied this property.

Property 5: For all processes P and Q, considering also
the process P;Q obtained by combining P and Q, |P| + |Q]
is less than or equal to [P;Q|. This property asserts that
two interacting processes may have zero or additional
(but never negative) complexity to that which 1s present
in the two initial processes themselves. This complexity is
introduced whenever processes interact.

Concatenation of two sets of numbers camnot be
negative, but can be zero if the sets are null. The metrics

proposed in this study return numeric results and the set
of numbers conform to Property 5 since, they have the
property (3P) (P<P+(Q) and (Q<P+Q) Due to tlus, all
proposed metrics satisfied Property 5.

Property 6: There exist processes P, Q and R such that |P)|
15 equal to |Q| but [P;R] 1s not equal to |Q;R|. This 1s an
assertion that it is possible to have two identical
processes, but when concatenated to a third same
process, their resulting complexities are not equal. This is
an indicator that the act of combining two processes has
the potential of introducing complexity additional to that
inherent in the in the original processes. Also, this new
added complexity 1s not completely determied by either
of the mteracting processes.

The metrics NOBA, NOSA, ALSA, CCBP, ACCSA
and SCBP assign fixed values to each of their nodes. Due
to the presence of these constants, every time two
processes are concatenated, there 13 no possibility of
external complexity being introduced. Therefore, they
failed to satisfy this property. However, IF4BP satisfied
this property because its components are not physical.
This means that TF4BP’s complexity is not necessarily
increased by adding extra nodes, unless if they contain
input and output information.

Property 7: There exist processes P and Q which are
composed of the same statements in a permuted order for
which |P|1s not equal to |Q|. This property argues that the
order of statements affects complexity 1.e., two 1dentical
processes can have different complexity when the order
of their statements is changed.

The metrics NOBA, NOSA, ALSA, CCBP, ACCSA
and SCBP assign fixed values to each of their nodes. If the
lengths and decision node types of two processes are
held constant such that the only operation is to permute
their order, then the values of ALSA, CCBP, ACCSA and
SCBP metrics will remain the same 1.¢e., the two permuted
processes will be treated as identical. However, the
complexity value of IFABP 1s affected when statements
order 18 changed, because messages could be passed to
different recipients thus, affecting the results of the
transaction. Therefore, Property 7 held true for IFABP but
does not hold for all other metrics.

Property 8: If two processes P and Q differ only in the
choice of names for different elements, then |P| is equal to
|Q|. This property asserts that two processes are equal if
their only difference is the choice of names. Tt is a
suggestion that a metric could fail to discriminate two
equal processes as a result of their using different names.

1324

Inform. Technol J., 9 (7): 1317-1326, 2010

Table 7: Summary of results of complexity metrics wvalidated with
Wevuker’s properties

Property NOBA NOSA ALSA TF4BP CCBP ACCSA SCBP

s

MDD -1 TR LA e W b
RN R NN NN
RN R NN NN
RN R NN NN
AN N N R N S

LUK X NNNNY
LUK X NNNNY
LUK X NNNNY

Key: v = Satisfied property; * = Unsatisfied property

All proposed metrics return numeric values. This
means that renaming a process or its parts cannot affect
its length, interface, structural or cognitive complexities.
Therefore, all proposed metrics satisfied this property.

Property 9: There exist processes P and Q for which
|[PHQ| 18 less than |P;Q| This property asserts that
interaction between parts of a process cause additional
positive complexity 1.e., it makes additional complexity a
requirement when two processes keep on interacting for
some time, or as the process grows with age. Since,
growth in process complexity occurs when new nodes are
added and none of the nodes has negative values, then 1t
is clear that the complexity of the new process is always
equal to or greater than the sum of the two original
processes. Consequently, TF4BP, CCBP, ACCSA and
SCBP metrics satisfied Property 9. However, NOBA,
NOSA and ALSA failed to satisfy this property because
they view process components as having fixed lengths.

A summary of the validation results for NOBA,
NOSA, ALSA, IF4BP, CCBP, ACCSA and SCBP metrics
are shown in Table 7.

DISCUSSION

Findings in case 1 show that the new metrics are
mtuitional, for example, processes with more activities
returned higher lengths than those with fewer activities.
In addition, admission process was found by all
complexity metrics to be more complex than loan eligibility
process. This 1s reasonable given that admission process
uses parallel processing while loan eligibility process uses
branch processing. Parallel processing 1s expected to be
more costly than branch processing because its branches
must not only be executed in parallel but the results must
also be synchronized.

In case 2, the length metrics NOBA, NOSA and
ALSA satisfied all five length requirements while
complexity metrics IFABP, CCBP, ACCSA and SCBP
satisfied all five complexity requirements in Briand’s
framework. This indicates that they are good metrics in
their respective categories.

In case 3, both length and complexity metrics were
validated together using Weyuker’s properties. Findings
show that NOBA, NOSA and ALSA failed to satisfy
Weyuker’s properties 6, 7 and 9. This 1s because they are
one-dimensional, measuring only length and thus, totally
1gnoring any effects that could be brought about by
different types of control-flows. The unsatisfied
properties are critical and consequently mean that NOBA,
NOSA and ALSA, although good as length metrics, score
poorly when treated as complexity metrics. They can
however, be used to complement other metrics in order to
give a fuller picture of process complexity.

The next metric to be validated in case 3 was IF4BP,
which failed to satisfy Property 2. The reason for its
failure is because it relies only on input and output
information flows and cannot sense any change when the
physical size of the process is increased (such as
incorporation of new assign activities to the process). The
last set of metrics to be validated in case 3 included CCBP,
ACCSA and SCBP. Each of these three metrics failed to
satisfy Weyuker’s properties 6 and 7, because they
assign fixed complexity weights to control-flow blocks,
which prevents them from detecting extra external
complexity that could arise from interactions or from
permutation of statements. In contrast, [F4BP satisfied
Property 6 since, 1t 1s not fixed and not physical. This
means that, adding extra activities does not necessarily
increase [F4BP’s complexity unless if the added activities
included input and output information. TF4BP also
satisfied Property 7 because changing the order of
statements could send messages to different recipients
thus, changing the flow of transaction and consequently
changing complexity that arises from information flow.

CONCLUSIONS

In this study, seven metrics were proposed for
measuring the complexity of EBP. The metrics were
evaluated using three case studies. In case 1, values
computed from three processes showed that the metrics
are intuitional. For example, processes that appear to be
more complex returned higher complexity values than their
counterparts.

Cases 2 and 3 were complementary theoretical
validation studies. Findings from case 2 show that the
length metrics satisfied all five length requirements while
complexity metrics satisfied all five complexity
requirements. In addition, findings from case 3 show that
ALSA satisfied 6 out of 9 Weyuker’s properties, TF4BP
satisfied 8 out of 9 Weyuker’s properties, while CCBP,
ACCSA and SCBP metrics each satisfied 7 out of 9
Weyuker’s properties. Although the unsatisfied
Weyuker’s properties for the fouwr complexity metrics are

1325

Inform. Technol J., 9 (7): 1317-1326, 2010

indeed limitations to the concerned metrics, the metrics
still satisfied a significant number of properties, which
means that their theoretical soundness 1s acceptable. The
length metrics that were given same treatment alongside
their complexity counterparts in case 3 showed less
significance, but otherwise rated very lughly when treated
under length category i case 2. Therefore, a conclusion
was reached that the new metrics are structurally good
metrics when used in their respective categories. The
metrics can also be used as a suite so that they
complement each other to give a fuller view of EBP
complexity.

In future, empirical validation studies need to be
conducted on these metrics in order to enhance the
validity of the results obtained here.

REFERENCES

Briand, L.C., 3. Morasca and V.R. Basili, 1996.
Property-based software engineering measwurement.
TEEE. Trans. Software Eng., 22: 68-86.

Canfora, G., F. Garcia, M. Piattini, F. Ruiz and
C.A. Visaggio, 2005. A family of experiments to
validate metrics for software process models. J. Syst.
Software, 77: 113-129.

Cardoso, J., 2005. Control-flow complexity measurement of
processes and weyuker’s properties. Proceedings of
the 6th International Enformatika Conference,
(IEC'05) World Academy of Science, Engineering and
Technology, pp: 213-218.

Cardoso, I, 2006. Complexity analysis of BPEL web
processes. Software Process: Improve. Practice J.,
12: 35-49.

Cardoso, J., J. Mendling, G. Newnann and H.A. Reijers,
2006. A discourse on complexity of process models.
Proceedings ofthe BPM 2006 Workshops on
Business Process, (BWBP’06), Vienna, Austria,
pp: 115-126.

Charfi, A, and M. Mezim, 2007. AO4BPEL: An
aspect-oriented extension to BPEL. World Wide
Web, 10: 309-344,

Costea, A. 2007. On measuring software complexity. I.
Applied Quantitative Methods, 2: 98-108.

Gruhn, V. and R. Laue, 2006. Adopting the complexity
measure for business process models. Proceedings
of the 5th TEEE International Conference on
Cognitive Informatics, (IICCT'06), Beijing, China,
pp: 236-241.

Henry, S. and D. Kafura, 1981. Software structure metrics
based on mnformation-flow. IEEE Trans. Software
Eng., 7: 510-518.

Ince, D.C. and M.J. Shepperd, 1989. An empirical and
theoretical analysis of an information flow-based
system design metric. LNCS., 387: 86-99.

Koh, T'W., MH. Selamat and A.A A Gham, 2008.
Exponential effort estimation model using unadjusted
function points. Inform. Technol. T., 7. 830-839.

Lindsay, A, D. Downs and K. Lunn, 2003. Business
processes-attempts to find a defimtion. Inform.
Software Technol., 45: 1015-1019.

Michelson, B., 2005. Business Process
Language (BPEL) primer: Understanding an
important component of SOA and integration
strategies. http://www.psgroup.com/detail aspx?
1d=630.

Misra, R.B., S. Srimuivasan and D.P. Mital, 2006. The use of
web services technology in the design of complex
software interfaces: An educational perspective.
Inform. Technol. T, 5: 1127-1131.

Misra, S., 2007. Cognitive program complexity measure.
Proceedings of the 6th IEEE Intemational Conference
on Cognitive Informatics, (ITCCT’07), Lake Tahoo,
CA., pp: 120-125.

Modafferi, S. and E. Conforti, 2006. Methods for enabling
recovery actions in WS-BPEL. Lecture Notes
Comput. Sci., 4275: 219-236.

Parthasarathy, S. and N. Anbazhagan, 2006. Analyzing
the software quality metrics for object oriented
technology. Inform. Technol. T., 5: 1053-1057.

Shao, J. and Y. Wang, 2003. A new measwure of software
complexity based on cognitive weight. Can. J. Elect.
Comput. Eng., 28: 69-74.

Tém, A., T. Andersson and K. Enholm, 1999, A
complexity metrics model for software. South Afr.
Comput. J., 24: 40-48.

Vanderfeesten, [, J. Cardoso, J. Mendling, H A Reijers
and W. van der Aalst, 2007. Quality Metrics for
Business Process Models. In: Workflow Handbook
2007, Fischer, 1. (Ed.). Futwe Strategies Inc.,
Lighthouse Pomt, FL., USA., pp: 179-190.

Wang, Y., 2002, On cogmtive informatics, Keynote
lecture. Proceeding of the TEEE International
Conference Cognitive Information, Aug. 19-20,
Calgary, Alberta, Canada, pp: 34-42.

Wang, Y., 2003. Using process algebra to describe human
and software behaviours. Bram Mind, 4: 199-213.

Weyuker, E.J., 1988. Evaluating software complexity
measures. [EEE Trans. Software Eng., 14: 1357-1365.

Zheng. Y., I. Zhou and P. Krause, 2007. Analysis of BPEL
data dependencies. Proceedings of 33rd
EUROMICRO Conference on Software Engineering
and Advenced Applications, Aug. 28-31, Lubeck,
pp: 351-338.

Execution

1326

	ITJ.pdf
	Page 1

