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ABSTRACT 

 
Low efficiency is a problem in most developing agriculture, and is one of the reasons for food 

insecurity. This paper provides information on smallholder production efficiency in one of the 

developing Sub-Saharan Countries: Kenya. It applies Data Envelopment Analysis (DEA) to farm-

level seasonal panel data. The estimated indexes indicate high levels of inefficiency between farm 

sizes, seasons, and adopters and non-adopters of ‗modern‘ farming technologies. A comparison of 

various farming practices shows that use of modern inputs and livestock-based capital could 

significantly improve farmers‘ performance. Tobit estimations show that the major factors 

influencing performance are the level of education, gender, market access and off-farm capital. 

Thus, policies aimed at improving education, rural infrastructure as well as assuring farmers of 

income through improved livelihood opportunities, and therefore reduced perceived uncertainty, 

could improve farm-level efficiency. The findings also provide support for prioritizing issues of 

farm production associated with women in policymaking. 
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INTRODUCTION 
 

Evidence abounds that agricultural production systems in Sub-Saharan Africa (SSA) are still 

characterized by low efficiency and productivity, although a few studies have reported 

isolated cases to the contrary (Hyden, 1986; Nyariki and Thirtle, 2000; Thirtle et al., 1993; 

Wiggins, 1995). The low efficiency and productivity growth in smallholder agriculture in 

SSA is manifested in the cumulative discrepancy between African production rates and those 

of the rest of the world. 

 In the case of Kenya, the country experienced a rapid expansion in agricultural 

production whose contribution to GDP grew by more than four percent in the first 

decade. The introduction and widespread adoption of new technologies led to a steady 

increase in food production. These developments, however, slowed down after the early 

1970s (ROK, 1994; Nyariki, 1997). Because of this, government objectives during the 

1970s and 1980s were geared towards increased food production from less productive 

lands, growth in agricultural employment, and resource conservation to improve food 

security. 

 The poor performance of agriculture in Kenya reflects a serious problem because 

this sector is the mainstay of the economy. The sector accounts for approximately 25 
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percent of GDP, provides employment for close to 70 percent of the population, contributes 

roughly 40 percent of export earnings, and provides most of the country's food supply 

(ROK, 2008). Slowing growth rates coupled with high population growth and limited 

arable land raise serious questions as to how this sector will meet the challenges of 

sustained per capita growth. 

 Kenya‘s past development plans have proposed to reduce the area under food 

production in order to release land to more valued export crops, which would then 

improve the per capita value of agricultural production. This meant that increases in the 

basic foodstuffs had to come from higher yields, and by implication higher efficiency of 

farm resource use. However, the efficiency of smallholder farms must first be enhanced 

to optimize the returns from the use of enhanced technology.  

 The lack of adequate information on the patterns and sources of efficiency of 

smallholder farms has become an important issue because the country faces household food 

insecurity (Nyariki et al., 2002). Thus, this paper analyzes the efficiency of smallholder 

farms and the factors influencing efficiency in one of the medium to low potential areas of 

Kenya. The next section briefly describes the farming area, followed by details of how data 

were collected and the variables used. The next section outlines the model used to derive 

efficiency indexes and discusses the results at this stage. Finally, the factors affecting 

efficiency are identified through Tobit regressions and the results are compared to those of 

similar studies in other developing countries. 

 

FARM CONDITIONS IN THE SAMPLE REGION AND DATA 
 

The sample was taken from farms in Kibwezi Division of Makueni District, in the south-east 

of Kenya. This is a semi-arid area with an average annual rainfall of between 600 and 

1300mm, occurring in two seasons—March to May and October to December. Annual mean 

temperatures are 19–26
0
C, which increase with evaporation down-slope. The study region is 

classified into six agro-ecological zones (AEZs); the most dominant of which are AEZs 3, 4 

and 5 (Figure 1).  

The region lies east of the Great Rift Valley covering about 7,263 km
2
 (ROK, 

1994). It has an estimated human population of over 500,000, giving a density of about 70 

persons per km
2
 (ROK, 2008). Settlements in the area are recent (circa 1970). FAO 

(1982) recommends areas like this to support 21 persons/km
2
 at full-potential. This 

suggests that the area is overpopulated, and would therefore require improved efficiency 

of resource use, among other measures, to ensure adequate food production. 

The land has great potential for sorghum, millet, cotton, sisal and livestock 

production, as suggested by the agro-ecological zones shown in Figure 1. Furthermore, 

Athi River, a major water resource in the area, makes it possible for crop irrigation and 

improved livestock production. 

Systematic sampling was done using a sampling frame constructed from all the 

available households of more than 1,000, from which 50 households were selected. 

Systematic sampling is often necessary, especially in a developing country like Kenya, 

due to poor infrastructure and difficult terrain (Nyariki, 2009). After selecting the sample, 

interviews were carried out using a questionnaire. Households were visited three times to 

obtain data for the three seasons of 2006-2007-2008. During the interviews, all the farmers 

selected gave adequate responses for analysis. 
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FIGURE 1. STUDY REGION SHOWING AGRO-ECOLOGICAL ZONES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Source: Adapted from Sombroek and Braun (1980). 

 

 Table 1 gives some sample statistics. Underlying these are average maize yields 

which for the three seasons were 1083kg, 70kg and 781kg respectively. This variation was 

reflected in other crops, a clear indication that yields follow fluctuating rainfall. The table 

reports annual maize and total crop yields per household in terms of users and non-users of 

various farm inputs, where yields are obtained by aggregating all crops into maize-

equivalents using average prices as weights over the three seasons. Generally higher yields 

were realized with the use of modern inputs, irrigation and the ox-plough. 
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TABLE 1. USE OF VARIOUS INPUTS AND ANNUAL AVERAGE YIELDS 

(KG/HA) IN KIBWEZI (2007/08) 
Household 

category 

Maize Maize-equivalents 

Use Non-use Use Non-use 

Hybrid seed 

Fertilizer 

Pesticide 

Irrigation 

Ox-plough 

757 

821 

862 

811 

783 

794 

772 

770 

546 

767 

  963 

  907 

1399 

  896 

  835 

  825 

  872 

  820 

  746 

1012 

 

DATA ORGANIZATION  

 

Aggregation of Inputs and Outputs 

 

The approach normally taken in constructing a benchmark of good practice involves 

defining the practitioners‘ objectives, defining inputs and outputs, evaluating the possible 

output with that level of input, and measuring the difference between the two. The vexing 

question in these estimations has been determining the method and extent of output and 

input aggregation, the á priori selection of inputs, and the unit of measurement. 

 Various methods of aggregation have been adopted in this literature. Some 

studies have used a mix of physical and monetary measures (for example, Byrnes et al., 

1987), while others have applied gross monetary values singly (for example, Langyintuo 

and Upton, 1994). Other studies have concentrated on a dominant crop and ignored the 

less important ones (for example, Piesse et al., 1996). If the choice is physical units of a 

major crop, the terms of trade of that crop with available alternatives must be known. If 

households cultivate a constant number and/or variety of crops on the same land or on 

distinctly different plots, a multi-product, multi-input analysis could be adopted. 

Applying monetary values in a situation where the primary objective is to produce for 

subsistence may, however, be misleading. Moreover, even if the primary objective was to 

produce for the market, the price obtained is as much a function of the market structure 

and marketing strategy as it is an economic concept of profit maximization. Thus, the use 

of prices as weights to aggregate outputs and inputs in any study of African agriculture 

can have limitations, and the robustness of the method of aggregation may determine how 

accurately the efficiency indexes derived reflect the performance of individual farmers. 

Schultz (1964) presents a less pessimistic view of the value of prices in 

aggregation, claiming that small farmers in traditional agriculture are well informed about 

the price in various markets. They are familiar with the local rents and are shrewd 

participants in the marketplace. There is therefore strong support for the view that food 

production in Africa is responsive to market forces (Berry, 1986; Wiggins, 1995; 

Mwakalobo, 2000), providing sufficient justification for the price-weight aggregation 

used in this efficiency measurement. 
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Selection of Inputs and Outputs 

 

A summary of the variables used in the construction of efficiency levels is given in Table 

2. The inputs are: (1) land (hectares); (2) total labor (household and hired in adult-hours); 

(3) cost of manure and seed, including modern inputs (improved seed, fertilizer, 

pesticide), costed whether bought or not using the average prices paid for them locally, as 

reported in the survey; (4) cost of capital (ox-plough, tractor, and miscellaneous inputs); 

and (5) livestock (aggregated into livestock units). Prices were used in aggregating some 

inputs if no suitable physical units were available, and also because some of the input use 

was so minimal that no suitable physical units were available.  

 

TABLE 2. SUMMARY STATISTICS OF VARIABLES IN EFFICIENCY 

MEASUREMENT 
Variable Sample mean SD Minimum Maximum 

Value of output (Kshs) 

Season 1 

Season 2 

Season 3  

Farm size cultivated (ha) 

Season 1 

Season 2 

Season 3  

Total labor (adult-hours) 

Season 1 

Season 2 

Season 3  

Cost of inputs (Kshs) 

Season 1 

Season 2 

Season 3  

Cost of capital (Kshs)1 

Season 1 

Season 2 

Season 3  

Livestock (250kg/unit) 

Season 1 

Season 2 

Season 3  

 

24744.0 

6824.8 

20629.0 

 

4.7 

4.0 

4.5 

 

2843.0 

1947.2 

1992.8 

 

1226.0 

858.4 

1062.4 

 

2019.0 

1040.9 

1800.0 

 

8.6 

8.2 

5.8 

 

18691.5 

9093.7 

13365.6 

 

2.4 

3.0 

2.7 

 

1267.0 

1658.7 

1758.8 

 

1463.4 

923.9 

1075.9 

 

2043.4 

1280.0 

2063.6 

 

7.9 

9.5 

7.8 

 

967.2 

5566.4 

7755.3 

 

1.3 

0.6 

0.9 

 

88 

40 

66 

 

350.4 

240.5 

320.6 

 

0 

0 

0 

 

0 

0 

0 

 

62961.4 

18652.7 

33776.8 

 

9.8 

7.6 

8.2 

 

15811 

11914 

10143 

 

6206 

5345 

6747 

 

4319 

2243 

3916 

 

21.9 

20.0 

14.0 

 

 All farm outputs were aggregated to derive a single unit. However, live animal 

sales (off-takes) were excluded because of difficulties in interpretation.
2
 An average of 

the buying and selling prices of the relevant crops and animal products by households in 

each season was used in constructing efficiency measures, as this is a more consistent 

estimate of price than either buying or selling price individually. 
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MEASUREMENT OF PRODUCTIVE EFFICIENCY  

 

The Advantages and Disadvantages of the Various Frontier Models 

 

The DEA and Corrected Ordinary Least Squares (COLS)—using a translog function—

are the most popular methods applying physical measures of inputs and outputs to derive 

indices of performance (Cloutier and Rowley, 1993; Cowie and Riddington, 1996; Amara 

et al., 1999; Wadud, 2003). The DEA model was initially developed by Charnes, Cooper 

and Rhodes (CCR) (1978)—and applies linear programming (LP) to estimate an empirical 

production technology frontier. The model was further formalized by Banker, Charnes and 

Cooper (BCC) (1984). It was later extended by Färe, Grosskopf and Lovell (1985) to include 

the decomposition of overall efficiency into measures of technical and scale efficiency. It is 

nonparametric and deterministic, with the efficiency of each farm measured as a ratio of 

actual to best practice performance. Thus, since the seminal work by Farrel (1957) on 

‗measuring the efficiency of decision making units‘, several models of the DEA have 

emerged with the most basic being the CCR. A further development on the DEA is the BCC 

model, which addresses varying returns to scale—either constant returns to scale (CRS) or 

variable returns to scale (VRS). A good description of DEA can be found in Seiford and 

Thrall (1990) and Seiford (1996). 

 With the adoption of the translog function, the main disadvantages are the 

difficulty in interpreting the coefficients estimated and the using up of a large number of 

degrees of freedom relative to the number of factors included in the estimation of 

parameters.
3
 The DEA has many advantages but its main attraction, compared to most 

forms of stochastic frontier analysis (SFA), is that no functional forms are imposed; so it 

does not matter if the producers differ. The problem regarding the assumption of identical 

production technology for all decision making units (DMUs) in the SFA has, however, 

been circumvented by new theoretical developments in the application of the true-

random-effects (TRE) model (Greene, 2005). 

 The difference between the SFA and the DEA is the latter‘s ability to 

decompose technical efficiency into overall technical, pure technical and scale efficiency. 

One shortfall of deterministic models is that they fail to deal with stochastic noise, which 

might result in efficiency levels being ‗systematically‘ overestimated. This tendency to 

overestimate efficiency scores does not present a problem in the current study, however, 

as long as it is ‗systematic overestimation‘, which should not fail to answer the key 

research question—whether or not ‗season, farm size and modern technology adoption 

influence smallholder production efficiency‘.  

 

Specification of the Applied Model 

 

The DEA model adopted in this paper uses the VRS approach. Based on the extensions on 

the BCC model by Färe, Grosskopf and Lovell (1985), (overall) technical efficiency, 

OT(x,y), can be decomposed into pure technical efficiency and scale efficiency—where x 

stands for the input(s) used and y output(s) produced. Let pure technical efficiency and scale 

efficiency be denoted by PT(x,y) and S(x,y) respectively. To estimate these measures the 

restrictions imposed on the reference technology in the aggregate measure of efficiency 

OT(x,y) are relaxed. Overall technical efficiency can be expressed as 
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OT(x,y) = PT(x,y)S(x,y) 

 

The efficiency measure PT(x,y) can then be expressed as 

 

PT(x,y) = min{:xL(Y)
+
}                                                                                              (1) 

 

where L(Y)
+
 represents the upper level set of the reference technology, i.e., the lower 

boundary of the isoquant which shows minimal input combinations yielding a given level of 

output Y.  is the minimized parameter and determines the amount by which observed inputs 

can be proportionally decreased if they can be used efficiently. The input usage, x, is an 

element of the upper level set, L
+
(Y). When  is minimized, x lies on the isoquant. 

 The technology in (1) allows PT(x,y) to be estimated without imposing constant 

returns to scale, but instead allows for variable returns to scale. The VRS technology gives 

efficiency measures independent of scale effects. The CRS restriction is relaxed by changing 

the restriction on the vector of intensity parameters, z, so that we have the following linear 

programming problem: 

 

PT(x,y) = min 

subject to zYyi* 

zXxi** 

zi0 

zi=1*** 

 

where i denotes the observation. The extra constraint on the z vector *** (the sum of z's=1) 

allows the data to be enveloped more closely and permits VRS to be exhibited (Valdmanis, 

1992). Once OT(x,y) and PT(x,y) efficiency measures have been obtained, the S(x,y) measure 

is derived by using the following equation: 

 

S(x,y) = OT(x,y)PT(x,y) 

 

 Figure 2 illustrates the VRS technology using a total product curve. Suppose there 

are three farms, a, b and c, which employ input X to produce output Y with three different 

input-output combinations. The transformation a-b-c exhibits CRS at b, increasing returns to 

scale (IRS) between a and b and decreasing returns to scale (DRS) to the right of b. With 

CRS technology, farm a, which employs xa of input X, is overall technically inefficient 

because it produces output ya instead of its potential ya*. Farm b is overall technically 

efficient as it lies on the potential total product curve, which is a ray from the origin derived 

from average product x/y. In measuring the scale efficiency, the long-run equilibrium 

condition, which is constant returns to scale, is assumed to represent optimal scale. To 

determine whether a given observation is scale efficient (i.e., satisfies CRS), the original 

transformation set (ray from the origin) which exhibits CRS everywhere must be modified 

(to, for example, xa-a-b-c) to allow for IRS as well as DRS. The economic interpretation of 

the shape of the VRS technology is based on the omission of the scale effects on overall 

efficiency (Valdmanis, 1992). Farms a and c become efficient since they lie on the new 

transformation set, and therefore exhibit a best practice technology. Therefore all the three 

farms are efficient given the VRS technology. The difference between the CRS and the VRS 
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a 

c 

b 

frontiers captures the scale effects. Farm a is scale inefficient by ox/oxa and farm c is scale 

inefficient by ox*/oxc (Thirtle et al., 1996). 

 

INTERPRETATION OF EFFICIENCY RESULTS 

 

Seasonal Differentiation 

 

Table 3 gives a summary of efficiency measures for the three farming seasons—second 

season of 2006/07 (season 1), first season of 2007 (season 2) and first season of 2007/08 

(season 3). (Farm-level results can be provided if requested.) The efficiency scores are 

grouped based on farm characteristics using farm-level data collected from the sample of 

50 households during the questionnaire survey.  

 

FIGURE 2. VARIABLE RETURNS TO SCALE 
 

 

                Y 

 

 

 

                                                                                         

                                                                                                 

 

                yb                                                           

 

 

 

 

               ya* 

 

 

 

 

                ya                                           

 

 

 

 

 

 

 

 

 

 

The efficiency measures are highest in season 1 and then progressively decline. 

Sixteen farms (32%) are overall technically efficient in the first season, declining to 16% 

in the more risky season 2, and further to 6% in season 3. The dispersion levels are fairly 

constant, which implies that weather, exogenous to all farms equally, may in part be 

O                      x               xa             xb     x*         xc                  X 
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responsible for falling efficiency. The decomposition of overall technical efficiency into 

pure technical efficiency and scale efficiency shows a similar pattern. 

The means of the indexes in Table 3 indicate that factors of inefficiency caused 

output losses of 58%, 83% and 88% in overall technical efficiency; 44%, 48% and 62% 

in pure technical efficiency; and 24%, 65% and 69% in scale efficiency in the three 

consecutive seasons respectively. 

 

TABLE 3. SUMMARY STATISTICS OF EFFICIENCY MEASURES BY INPUT 

USE, SIZE, TECHNOLOGY ADOPTION AND SEASON 
Category of farms Season 1 Season 2 Season 3 

OT PT S OT PT S OT PT S 

Mean, whole 

sample (50) farms 

 

0.42 

 

0.56 

 

0.76 

 

0.17 

 

0.52 

 

0.35 

 

0.12 

 

0.38 

 

0.31 

Hybrid seed 

No hybrid seed 

0.73 

0.24 

0.83 

0.37 

0.88 

0.65 

0.14 

0.22 

0.51 

0.52 

0.27 

0.45 

0.14 

0.12 

0.53 

0.27 

0.42 

0.23 

Plough 

No plough 

0.75 

0.24 

0.84 

0.37 

0.87 

0.66 

0.13 

0.22 

0.54 

0.49 

0.35 

0.35 

0.26 

0.14 

0.61 

0.23 

0.50 

0.20 

Fertilizer  

No fertilizer 

0.85 

0.29 

0.88 

0.41 

0.85 

0.69 

0.10 

0.29 

0.43 

0.62 

0.32 

0.38 

0.28 

0.23 

0.58 

0.38 

0.48 

0.27 

Cattle 
No cattle 

0.65 
0.34 

0.75 
0.46 

0.88 
0.65 

0.21 
0.20 

0.68 
0.39 

0.46 
0.27 

0.16 
0.15 

0.48 
0.34 

0.45 
0.22 

Irrigation 

No irrigation 

0.54 

0.38 

0.66 

0.51 

0.84 

0.68 

0.46 

0.25 

0.80 

0.40 

0.63 

0.27 

0.28 

0.14 

0.63 

0.30 

0.43 

0.29 

Small* 

Large 

0.46 

0.40 

0.54 

0.61 

0.76 

0.76 

0.20 

0.18 

0.55 

0.50 

0.41 

0.34 

0.16 

0.13 

0.36 

0.42 

0.34 

0.31 

Modern** 

Traditional 

0.52 

0.42 

0.66 

0.50 

0.88 

0.64 

0.16 

0.18 

0.50 

0.56 

0.34 

0.35 

0.12 

0.14 

0.40 

0.40 

0.33 

0.30 

Frontier farms (%) 

   Whole sample 

   Modern 

   Traditional 

 

32 

24 

8 

 

40 

30 

10 

 

32 

24 

8 

 

16 

2 

14 

 

20 

4 

16 

 

16 

2 

14 

 

6 

4 

2 

 

12 

8 

4 

 

6 

4 

2 

*Small farms are >04ha while large farms are >4ha. 

**In each season, ‘modern’ technology adopters used one or a combination of the three inputs—

hybrid seed, fertilizer and plough—while ‘traditional’ farmers used none of them.  

 

If performance is compared between farmers, the best farmers were between 

76.1% and 99.7% more efficient than the least efficient ones. The best were also between 

20.5% and 75.3% more efficient than average. In each of the three seasons, farm size is 

an important limitation, and 25-50% more farmers achieve pure technical efficiency than 

overall efficiency. The mean of the land variable does not change much between seasons. 

Farmers use their experience from the previous years and know there is a higher 

probability of crop failure in season 2. Clearly, farmers try to minimize risk; they use 

lower levels of inputs in this middle season to avoid incurring large losses in the event of 

crop failure. This results in more farms being full-efficient in season 1 compared to the 

other seasons. However, since each frontier is independent of the others, it means that a 

poor season due to low rainfall should affect all farms equally; but this was not the case 

probably because many farmers were risk averse. Carry-over seasonal effects may be 

existing and tests for the significance of these are in a later section. 
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Analysis of Farmers by Specific Practice and Size 

 

The assumption of homogeneity of DMUs is required to make judgment on performance 

based on methods founded on peer comparisons. But there is never a system that can be 

perfectly homogeneous. Thus, we have to relax the condition to accept a reasonable 

degree of homogeneity, although the ‗reasonable degree‘ may be difficult to discern. The 

contradicting argument regarding efficiency analysis is that if perfect homogeneity were 

to be achieved, it would render the exercise of comparing operators meaningless, as 

everybody becomes efficient. This is the cyclical argument concerning the definition of 

efficiency. 

The efficiency indexes were regrouped into those that used modern inputs and 

those that predominantly used traditional farming technology, among others (Table 3). 

On average, those farmers that were technically efficient owned cattle, carried out 

chemical fertilization of their fields, and had some access to irrigation water. Most of the 

farmers reported having used part of their crop as fodder. During anticipated crop failure, 

the farmers would cut the green maize or sorghum stock as feed for the animals. 

Apparently these farmers were experiencing the benefit of crop-livestock interaction 

whereby livestock provided manure for cropping and crop aftermath provided fodder for 

livestock. 

On average, those farmers who had practiced irrigation achieved higher 

efficiency levels. Needless to say, this result implies that provision of extra water is 

crucial in low to medium potential areas as it would raise performance through increased 

farm and animal production, by lengthening the growing period or reducing plant and 

animal water stress.  

The results for seasons 2 and 3 appear to be different from those for season 1. 

These were seasons of prolonged dry weather. During this period the rains were so slight 

the only crops realized were the legumes that have some degree of tolerance to water 

stress. Those farmers who had purchased expensive inputs experienced great losses in 

cash. In contrast, those farmers that had used little or no such inputs lost comparatively 

little. Related to this, characterization of farmers into modern and traditional indicates 

that greater efficiency tends to be achieved among farmers who use one or other of the 

modern inputs during normal rain season. During the low rain seasons, however, 

traditional farmers perform better (Table 3).  

Further categorization of farmers into small and large shows that in the normal 

season better performance was realized among the larger farms while the opposite was 

true during the drier seasons. Generally, however, the differences in this category are not 

pronounced. 

 

Seasonal Distribution of Efficiency 

 

The distribution of the three measures of efficiency for the three seasons was compared to 

assess the stability of the efficiency measures from season to season, after which a 

decision could be made on whether to carry out further tests concerning efficiency 

determinants using the entire data set. Without stability it would not be sensible to pool 

the data, as efficiency among farmers would not be enduring. Table 4 reports the results 

using a variety of methods for comparison. The model underlying the parametric methods 
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assumes that the data have been derived from normal distributions with equal variances. 

Assuming the condition of normality might not be fully realized, nonparametric methods 

are used as suitable alternative sources of information about the distribution of the 

efficiency indexes. The ANOVA tests whether there are significant differences between 

data sets, while the Spearman rank correlation coefficient tests whether there is 

agreement between rankings. The null hypothesis is that the distribution of efficiency in 

one season is independent of that in the other season. The results generally show that the 

null hypothesis is rejected. Therefore there is no difference in index means between 

seasons and the indices are not independent. 

 

TABLE 4. STATISTICAL TESTS: COMPARING EFFICIENCY MEASURES BY 

SEASON 
Seasons compared Efficiency measure ANOVA (F) 

(Prob.>F) 

Spearman 

Season 1/season 2 OT 

 

PT 

 

S 

 

0.112 

(0.739) 

0.045 

(0.833) 

0.143 

(0.707) 

-0.021 

(0.890) 

0.005 

(0.974) 

-0.097 

(0.502) 

Season 1/season 3 OT 

 

PT 

 

S 

 

1.842 

(0.181) 

6.053 

(0.018)* 

0.452 

(0.505) 

0.146 

(0.312) 

0.213 

(0.138) 

0.107 

(0.458) 

Season 2/season 3 OT 

 

PT 

 

S 

 

2.134 

(0.151) 

0.271 

(0.605) 

2.342 

(0.133) 

-0.091 

(0.528) 

0.034 

(0.816) 

-0.075 

(0.606) 

*P-values (in brackets) significant at 5% level for two-tailed test. 

 

DETERMINANTS OF EFFICIENCY 
 

Variables 

 

This section explains farm efficiency using household characteristics, infrastructure and 

farmer decision variables. Table 5 provides summary statistics for the variables. The 

variables were constructed from the data collected from the questionnaire survey. These 

variables included household size—all members resident in the farm within the season; 

level of education in four categories—the absence of formal education earning the lowest 

score of 1 while secondary and college education the highest of 4; farm size—area of 

land used; level of development or quality of infrastructure and marketing system 

(represented by the approximate distance from the homestead to the nearest market 

place); age of farmer (based on ranges); number of sources of income (diversification); 

planting time—in four categories (those planting weeks before rains scoring the lowest 
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while those planting weeks after the highest); gender of household head (female=0, 

male=1); and extension (number of visits in each season). 

 

TABLE 5. DESCRIPTIVE STATISTICS OF VARIABLES IN THE ANALYSIS 

OF DETERMINANTS OF FARM EFFICIENCY 
Variable All seasons Season 1 Season 2 Season 3 

Mean SD Mean SD Mean SD Mean SD 

Age of farmer (years) 

Gender of household head 

Farm size (ha) 

Household size 

Level of education 

Market distance (km) 

Number of income sources 

Technical advice  

47.99 

0.64 

4.42 

7.32 

1.68 

3.16 

2.85 

0.30 

15.2 

– 

2.8 

2.3 

– 

1.2 

1.5 

– 

47.96 

0.68 

4.72 

7.32 

1.62 

3.22 

3.05 

0.28 

14.1 

– 

2.4 

2.5 

– 

1.1 

1.8 

– 

47.96 

0.66 

4.06 

7.40 

1.66 

3.18 

2.52 

0.26 

14.6 

– 

3.0 

2.6 

– 

1.0 

1.4 

– 

48.11 

0.62 

4.55 

7.26 

1.70 

3.04 

3.10 

0.32 

15.5 

– 

2.7 

2.4 

– 

0.9 

1.5 

– 

Note: Sample size=50. 

 

A Two-tailed Tobit Using Panel Data 

 

The Tobit approach has been used in several studies to evaluate the factors influencing 

farm inefficiencies and technology adoption (e.g., Fernandez-Cornejo, 1994; Wadud, 

2003). As an example, Wadud (2003) carried out a Tobit regression analysis on both 

stochastic frontier and DEA efficiency scores to determine the factors associated with 

inefficiency of farms in Bangladesh. In this analysis, there was no overall difference 

between the results related to the stochastic frontier and DEA scores. 

 Various parametric approximations of non-parametric frontiers have been 

proposed in the recent literature. One of these is a bootstrap approach to deal with the 

stochastic noise in non-parametric frontiers (Simar, 1992). However, as Simar himself 

admits, these approaches have no theoretical and statistical background (Simar, 2003). 

Thus, this paper does not attempt to adopt these approaches. 

 In the Tobit analysis, the three seasons were combined to form a panel of data, 

increasing the degrees of freedom and ensuring the robustness of the estimates. Since 

efficiency indices are bounded between zero and one, the dependent variable is limited, 

and therefore the use of OLS regression is inappropriate as the residuals do not satisfy the 

condition E(t) = 0, which is required to derive unbiased estimates (Maddala, 1988). The 

likelihood term for the efficiency is given by the integral from –i–Xit to 1–i–Xit. 

Parameters are then obtained through maximum likelihood estimation (MLE) by applying 

a two-tailed Tobit procedure (Baltagi, 1995; Fernandez-Cornejo, 1994). The base 

regression equation for this purpose is: 

 

ititiit XY                                                                                    (2) 

i = 1, 2, ..., N 

t = 1, 2, ..., T 

 

where Yit is the efficiency measure for the ith farm in the tth period (season) and Xit is a k-

dimensional vector of observable variables, i captures the farm specific unobserved 

variables, ß is a k-dimensional vector of parameters, and i is the error term with mean 
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zero and variance 
2
 representing unmeasured or un-measurable variables influencing 

farm efficiency.  

 A common approach to represent unobservable units in analyses of panel data 

involves the use of a varying intercept term. Under this approach, the equation in (2) is 

transformed to allow the intercept term to differ according to the unobserved differences 

for each cross-sectional unit, giving the fixed effects model (FEM): 

 

ititiit XY                                                                           (3) 

 

where 
i   is the intercept for the ith farm and   is the mean intercept. The 

appropriate estimation procedure depends upon the cross-sectional effects i. If the effects 

are fixed, then a standard dummy variable model is appropriate; if they are random, error 

components estimation procedures should be used. The choice is important because if the 

effects are fixed, use of a random effects model (REM) will produce biased parameter 

estimates while, if the reverse is the case, use of a FEM will yield inefficient estimates 

(Maddala, 1988; Pindyck and Rubinfeld, 1991). A statistical test for the correct 

specification of such cross-sectional effects has been developed by Hausman (1978).  

 

Results of the Analysis of Efficiency Determinants 

 

Table 6 reports the Tobit estimation. The factors that have a significant effect on 

efficiency are consistent and the signs are as expected. Education has a significant 

positive influence on the farmer whilst age has an opposite response. This is the 

expectation because it is likely that a more educated farmer understands faster any new 

innovation. These results support the premise that increases in human capital enable 

households to improve resource utilization and thus achieve higher productivity. 

 Planting time has a negative effect. Farmers that planted just after rains had 

higher yields, a result that supports the view that efficiency is a function of rainfall. 

Diversification (off-farm income and remittances) has a significant effect on efficiency 

and extra cash increased the use of modern inputs. Infrastructure is important if produce 

is to be sold. The negative and significant coefficient on the distance to market indicates 

that those closer to markets are more efficient. Part of the reason is access to 

transportation, but also the more remote lose out in the exchange of ideas and 

opportunities to learn new techniques.  

Farm size, if land is not limited, depends on the availability of labor. Household 

size plays a major role in determining the number of those available for work. However, 

the two size variables have a limited influence except on scale efficiency. This finding is 

contrary to what is commonly believed; that in much of rural Africa labor rather than 

land is a more important constraint to farm production (Upton, 1987). The outcome of 

this analysis is not surprising. If larger households apply more labor, it is possible that the 

marginal product of such labor declines, making the farms in question a little less 

efficient than the rest in the sample. 

Finally, the gender variable influences efficiency negatively, suggesting that 

female-headed households are more efficient than their male counterparts. The likely 

reason is that women are more involved in making decisions about farming and are 
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therefore better innovators. However, several similar empirical studies have reported an 

opposite effect (e.g., Solis et al., 2009; Gonzalez, 2004). These studies contend that lower  

 

TABLE 6. TOBIT ESTIMATION: FACTORS INFLUENCING EFFICIENCY 

 
 

Variables 

OT PT S 

Coefficient t-value Coefficient t-value Coefficient t-value 

Constant 2.456 1.44 2.18 1.83 0.59 -1.22 
Age of farmer -0.187 -2.16* -1.342 -1.99* -1.46 -2.21* 

Gender of household head 0.105 -1.99* 1.015 -2.44* 0.117 -2.84* 

Farm size 0.012 -1.23 0.225 -1.05 0.743 2.12* 
Household size 0.513 -1.74 0.188 -1.85 1.344 1.97* 

Level of education 0.146 1.98* 0.161 2.25* 0.160 2.00* 

Market distance -0.741 -4.14* -0.111 -2.14* -0.416 -3.35* 
Number of income sources 1.006 2.32* 1.354 2.18* 1.752 2.55* 

Technical advice 1.512 1.89 1.125 1.92 0.422 1.96* 

Time of planting -1.961 -2.70* -1.949 -2.32* -1.019 -1.89 

 test - joint effect variables 42.91* 43.14* 59.09* 

F-test for fixed effects 5.99* 8.37* 8.87* 

Hausman test statistic 69.33* 76.78* 68.55* 

*Significant at 5%; Number of observations=50. 

 

levels of efficiency among female-headed households could stem from gender inequities 

in the rural areas in question, where women have more difficult access to land, capital 

and/or other financial services 

 

CONCLUSION 
 

The main hypothesis of this study is that season, farm size and modern technology 

adoption influence the efficiency of smallholder farms in the dry lands of Kenya. 

Efficiency is also hypothesized to be a function of several farm-specific factors for which 

data were available. The analysis of efficiency based on a comparison between ‗modern‘ 

and ‗traditional‘ technology adoption as well as ‗large‘ and ‗small‘ farmers tends to 

support Schultz‘s ―efficient but poor‖ hypothesis. Even though Schultz has been 

criticized for using scant empirical evidence to support his arguments (Ball and Pounder, 

1996; Shapiro, 1983), his ideas are still relevant. 

It has been demonstrated that there are overall inefficiencies in the way farmers 

use their resources. The culture of livestock keeping alongside arable agriculture has been 

continued in this lowland area regardless of unreliable rainfall. Since settlements in the 

study area are recent, it may be that farmers do not understand their environment well. 

The low percentage of full-efficient farmers thus tends to suggest that inefficiency is 

being driven by farmers trying to impose the culture of cultivation on unsuitable land. 

The farmers are trying to cope with the new harsh environment in which they try to 

experiment with their old culture of mixed farming. This suggests that they will need a 

generation of experience with their ‗new resource‘—land—to ‗discover‘ how to use it 

optimally. This idea is similar to Schultz‘s emphasis on the value of farmers‘ knowledge 

of their own resources and technology. Schultz observed that farmers are ―on the look out 

for new and better seeds, fertilizer, ways of planting as well as the age-long techniques 

that have been refined and sharpened by countless years of experience‖ (P.45). 
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In interpreting the results of efficiency, the question of tastes and preferences in 

foods consumed and crops grown comes to mind. The preferred food in the study area is 

maize. Farmers persistently grow this crop and yet the crop performs poorly so often. 

Continued cultivation of maize in such circumstances also raises the question of farmers 

not having faith in markets. They reckon that they may be more assured of some food if 

they produced their own; because they may not be able to raise enough money to 

purchase food and because the food may not be available when needed (implying the fear 

of the prospect of market failure). The question of risk and uncertainty is important as 

well and may be having a role to play in influencing the efficiency of farmers. This 

suggests that there may be ‗inefficiency by choice‘ rather than ‗inefficiency by 

ignorance‘, and that assuring farmers of income by improving their livelihood 

opportunities and reducing perceived risk could improve ‗efficiency‘. However, this 

raises the unresolved problems related to the interpretation of efficiency. 

The Tobit regression analysis indicates that efficiency is influenced by the age, 

gender and level of education of the farmer, alongside diversification and infrastructural 

development. It shows that human capital is key to improved technical efficiency. This 

supports the arguments by Solis et al. (2009) that investments in human capital provide 

the greatest returns in terms of socio-economic development. Thus, agricultural 

development in the rural areas of SSA should strengthen efforts to increase the level of 

knowledge among smallholder farmers.  

According to the findings, diversifying the sources of household incomes is an 

effective way to enhance production through improved agricultural conditions. This 

result also suggests that off-farm work can contribute to farm productivity. The analysis 

also reveals that scale efficiency is positively influenced by land size, suggesting that 

land fragmentation negatively affects efficiency at the scale level. Thus, policies that aim 

at improving land management by discouraging land fragmentation are likely to increase 

production. The result showing that female-headed households are more efficient than 

male-headed ones suggests that policies aimed at improving farm production should 

address issues that limit women‘s ability to realize their full potential in farming activities 

rather than focusing on men alone. This in turn is expected to ensure improved household 

food security. 

Finally, these findings are useful in designing poverty alleviation strategies in 

rural dry land areas in developing countries. It is often argued that one of the most 

important factors in developing agriculture is poverty, which leads to the overuse of 

natural resources such as land, in turn causing degradation and a decline in agricultural 

productivity. The evidence from this study indicates that policies directed at supporting 

rural infrastructure to facilitate market access can improve agricultural efficiency.  

 

ENDNOTES 

 
1
 The zero values for minimum capital suggest that some households neither used nor hired an ox-

plough or tractor; they used simple tools like hoes whose use-value was as good as zero. Capital 

stock was not used because the data would have been highly skewed since only a few farmers 

owned tractors and ox-ploughs. 
2 In a household farming system, live animal sales may and are frequently not as a result of ‗net‘ 

production (or biological off-take). They may actually be sales of part of the family capital, 

triggered by food shortages. 
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3 With, say, three factors, a minimum of nine parameter estimates would be required in a translog 

model. In cases where there might be problems of insufficient data, this would be a serious 

disadvantage. 
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