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Abstract: We study a nonlinear Black-Scholes partial differential equation
whose nonlinearity is as a result of a feedback effect. This is an illiquid mar-
ket effect arising from transaction costs. An analytic solution to the nonlinear
Black-Scholes equation via a solitary wave solution is currently unknown. After
transforming the equation into a parabolic nonlinear porous medium equation,
we find that the assumption of a traveling wave profile to the later equation re-
duces it to ordinary differential equations. This together with the use of localiz-
ing boundary conditions facilitate a twice continuously differentiable nontrivial
analytic solution by integrating directly.
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1. Introduction

Two primary assumptions are used in formulating classical arbitrage pricing
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theory: frictionless and competitive markets. In a frictionless market, there are
no transaction costs and restrictions on trade while in a competitive market, a
trader can buy or sell any quantity of a security without changing its price. Re-
laxing the competitive market assumption can completely change the standard
theory. As such, manipulation of the market may become an issue and pricing
of an option becomes market structure and trader dependent.

The notion of liquidity risk is introduced on relaxing the assumptions. This
risk, roughly speaking, is the additional risk resulting from timing and the size
of a trade.

Under market manipulation, the price process of a security can depend
on the entire history of the investor’s past trades up to the current trade.
Eliminating this path-dependent condition rules out market manipulation and
allows use of the classical arbitrage pricing theory.

In the classical theory, there is no change in price for any order size, i.e., the
trader does not move the market. The price process of a security is independent
of the past. This means that a trading strategy has a temporary impact on the
price process.

In illiquid markets, the effect of delta hedging is a function of market liquid-
ity. This feedback effect is such that for transaction costs model if (“Gamma”)
uss < 0, the “volatility”, σ

√
1 + 2ρsuss, goes up and vice versa. The feed-

back effect has to be incorporated into the pricing of derivatives implicitly or
explicitly.

An analytic solution to the nonlinear Black-Scholes partial differential equa-
tion via a solitary wave solution is currently unknown.

The purpose of the paper is to solve analytically the nonlinear Black-Scholes
equation arising from transaction costs. This is done by differentiating the
equation twice with respect to the spatial variable s. After substitutions and
transformations, we get a porous medium equation. Assuming a traveling wave
solution to the porous medium equation reduces it to ordinary differential equa-
tions (ODEs) and the solution to the nonlinear Black-Scholes equation follows.

This paper is outlined as follows. Section 2 describes the classical option
pricing theory. Its modification is in Section 3. The solution to the nonlinear
Black-Scholes equation is presented in Section 4. Section 5 concludes the paper.
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2. Standard Option Valuation Theory

The results of the linear Black-Scholes equation were obtained by considering
an option maturing at time T for a non-dividend-paying stock. In the classical
theory, there is no change in price for any order size, i.e., the trader does not
move the market. The price process of a security is independent of the past.
This means that an investor’s trading strategy has a temporary impact on the
price process.

A call (put) option is a contract where at a prescribed time in future, known
as the expiry date T , the holder of the option may buy (sell) a prescribed asset,
known as the underlying asset s, for a prescribed amount, known as the exercise
(strike) price K. The opposite party, has the obligation to sell (buy) the asset
if the holder chooses to buy (sell) it. An option’s value is therefore a function of
various parameters in the contract, such as the time to expiry T and strike price
K. It also depends on the asset’s properties, such as its drift µ and volatility
σ, its current market price st and time t, and the risk-free interest rate r. The
option’s value can therefore be written as u(t, s;σ, µ;K,T ; r). The following
assumptions are used for modeling the financial market:

i. The underlying asset s follows a geometric Brownian motion;

ii. The drift, volatility and the risk-free interest rate are constant for 0 ≤
t ≤ T . No dividends are paid in that period;

iii. The market is frictionless, hence there are no transaction costs, lending
and borrowing rates of interest are equal, all parties can access any information,
and all credits and securities are available in any size at any time. Moreover,
the price cannot be influenced by an individual trading, i.e., the market is
competitive; and

iv. There are no arbitrage opportunities.

The market is said to be complete under these assumptions. This means
that any asset and any derivative can be hedged or replicated with other assets’
portfolio in the market.

The first assumption means that

dst = µstdt + σstdWt, µ > 0, (2.1)

where Wt is a standard Brownian motion (or Wiener process). This linear price
trajectory is called the Merton-Black-Scholes model.

We now let Πt be a portfolio’s value of one long option position and a short
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position in some quantity ∆, delta, of the underlying asset:

Πt = u(t, s) − ∆s. (2.2)

From Itô’s Lemma we have

du = (ut +
1

2
σ2s2uss)dt + usds,

where ut = ∂u
∂t , us = ∂u

∂s and uss = ∂2u
∂s2 . Hence, the portfolio changes by

dΠt = (ut +
1

2
σ2s2uss)dt + (us − ∆)ds (2.3)

as ∆ is constant during the time step dt.

The risk in our portfolio is the random terms. We can reduce or even
eliminate the risk by carefully choosing ∆. From (2.3) the random terms are

(us − ∆)ds.

We can delta hedge by choosing

∆ = us. (2.4)

This leaves us with a portfolio whose value changes by the amount

dΠt = (ut +
1

2
σ2s2uss)dt. (2.5)

The change is completely riskless. This means that

dΠt = rΠtdt, Π0 = 1, (2.6)

where r > 0 is a continuously compounded interest rate. The security Π is said
to be “risk-free” as its dynamics do not have stochastic components. Integrat-
ing (2.6) gives

Πt = ert.

This is an example of the no-arbitrage principle.

Substitute (2.4) into (2.2) to get

Πt = u − sus,

then plug into the right hand side of (2.6) to get

dΠt = r(u − sus)dt. (2.7)

Comparing equations (2.5) and (2.7) we get

(ut +
1

2
σ2s2uss)dt = r(u − sus)dt.

Divide through by dt. Rearranging gives the Black-Scholes equation

ut +
1

2
σ2s2uss + rsus − ru = 0 in R × [0, T ]. (2.8)

To specify values of the derivative at the boundaries where possible values
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of s and t lie, we use boundary conditions. For a European call option, the
boundary conditions are

i. u(t, 0) = 0 for 0 ≤ t ≤ T ,

ii. u(t, s) ∼ s − Ke−r(T−t) as s → ∞.

The pay-off function is given by

u(T, s) = (sT − K)+ = max {sT − K, 0} for 0 ≤ s

since it can only be exercised if sT > K. As s → ∞, the option is likely to be
exercised since s will exceed K. Since European options may only be exercised
on expiry, as maturity approaches, this means that s − Ke−r(T−t) ≈ s − K =
u(t, s). Hence, the second condition has to be understood as

lim
s→∞

u(t, s)

s − Ke−r(T−t)
= 1

uniformly for 0 ≤ t ≤ T . Since (2.8) is independent of µ, we can choose to work
in a risk-neutral world to value derivatives. At maturity, the expected value is
Ê(max {sT − K, 0}). Hence, a call option’s value becomes

c(t, s) = e−r(T−t)Ê (max {sT − K, 0}) , 0 ≤ t ≤ T. (2.9)

Using Itô’s Lemma, the stock price in equation (2.1) is given by

st = s0e
(µ−1

2 σ2)t+σWt . (2.10)

From (2.10) and the relation Ê(st) = s0e
rt, equation (2.9) yields

c(t, s) = s0N(d1) − Ke−r(T−t)N(d2)

where

d1 =
ln(s0/K) + (r + σ2/2)(T − t)

σ
√

T − t
and

d2 =
ln(s0/K) + (r − σ2/2)(T − t)

σ
√

T − t
= d1 − σ

√
T − t.

The cumulative distribution function for the standard normal distribution is
given by

N(di) = P (Z ≤ di) = 1√
2π

∫ di

−∞
e−

x2

2 dx, di ∈ R, i = 1 or 2.

Reciprocally, for a put option, the terminal condition is given by

u(T, s) = (K − sT )+ = max {K − sT , 0} for 0 ≤ s

as it can only be exercised if K > sT . Its boundary conditions are
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i. u(t, 0) = Ke−r(T−t) for 0 ≤ t ≤ T ,

ii. u(t, s) → 0 as s → ∞.

The expected value is Ê[(K − sT )+] when t = T . The put price is

p(t, s) = Ke−r(T−t)N(−d2) − s0N(−d1).

3. A Modified Option Valuation Model

Nonlinearities in diffusion models can arise from source terms, insect dispersal,
heat conduction and illiquid market effects.

In this work, we will consider the (quadratic) transaction-cost model for
modeling illiquid markets. Two assets are used in the model: a bond (or a
risk-free money market account with spot rate of interest r ≥ 0) whose value
at time t is Bt ≡ 1, and a stock (risky and illiquid asset). The bond’s market
is assumed to be liquid (or perfectly elastic), see [4].

Cetin et al (see [4], [5]) have put forward the predominant model in the
transaction-Cost Model where a fundamental stock price process s0

t follows the
dynamics

ds0
t = µs0

t dt + σs0
t dWt, t ∈ [0, T ].

When trading α shares, the transaction price to be paid by the investor at time
t for his purchase/sale is

st(α) = eραs0
t , α ∈ R,

where ρ is a liquidity parameter with 0 ≤ ρ < 1. A bid-ask-spread with size
depending on α is essentially modeled by the transaction price. For a Markovian
trading strategy (a strategy of the form Φt = φ(t, s0

t )) for a smooth function
φ = us which is the hedge ratio, we have φs = uss.

If the stock and bond positions are Φt and βt respectively where Φt is a
semimartingale, then the paper value V M

t = Φts
0
t + βt. The change in the

quadratic variation

[Φ]t =

∫ t

0

(

φs(τ, s
0
τ )σs0

τ

)2
dτ

is d[Φ]t =
(

uss(t, s
0
t )σs0

t

)2
dt. Applying Itô formula to u(t, s0

t ) gives

du(t, s0
t ) = us(t, s

0
t )ds0

t +

(

ut(t, s
0
t ) +

1

2
σ2(s0

t )
2uss(t, s

0
t )

)

dt. (3.1)
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In the limit, the wealth dynamics of a self-financing strategy is

dV M
t = Φtds0

t − ρs0
t d[Φ]t. (3.2)

Since V M
t = u(t, s0

t ), substitute d[Φ]t into (3.2) and apply the uniqueness of
semi-martingale decompositions. Equating the deterministic components of
the resulting equation and equation (3.1) gives

ut +
1

2
σ2s2uss(1 + 2ρsuss) = 0, u(s0

T , T ) = h(s0
T ) (3.3)

where h(s0
T ) is a terminal claim whose hedge cost u(s0

t , t) is the solution to (3.3).
The magnitude of the feedback effect is determined by ρs. Large ρ implies a
big market-impact of hedging. If ρ → 0 or no hedging demand, the asset’s price
follows the standard Black-Scholes model with constant volatility σ.

4. Solution to the Nonlinear Black-Scholes Equation

Theorem 4.1. If V (x, t) is any positive solution to the nonlinear porous

medium equation Vt +
(

D(V )Vx + σ2

4 V 2
)

x
= 0 in R × (0,∞), then

u(s, t) =
1

ρ



−
√

se

ct + δ

2 + s(1 − ln s)(
1

4
− c

σ2
) + st

(

σ2

16
− c2

σ2

)

− σ2

16c
ect+δ





solves the nonlinear Black-Scholes equation ut + 1
2σ2s2uss(1 + 2ρsuss) = 0 for

s ∈ R, t > 0, D(V ) = σ2

2 V and for each δ ∈ R, c > 0, σ > 0 and 1 > ρ > 0.

Proof. Since the dynamical process (3.3) is first order in t, its solutions are
expected to be uniquely prescribed by their initial values

u(s, 0) = f(s), −∞ < s < ∞.

Differentiate (3.3) twice with respect to s and set uss = w to get

wt +
σ2s2

2
(1 + 4ρsw)wss + 2ρσ2s3w2

s + 2σ2s(1 + 6ρsw)ws + σ2(1 + 6ρsw)w = 0.

Applying the transformations w = υ
ρs and x = lns to the reaction-advection-

diffusion equation gives

υt +
σ2

2
(1 + 4υ)υxx + 2σ2υ2

x +
σ2

2
(1 + 4υ)υx = 0. (4.1)

If we let υ = V −1
4 we get υt = Vt

4 , υx = Vx

4 , and υxx = Vxx

4 . Substituting these
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expressions into equation (4.1) gives

Vt +
σ2

2

(

V Vxx + V 2
x + V Vx

)

= 0. (4.2)

This is a homogeneous second order nonlinear parabolic PDE of degree one.
From this advection-diffusion equation, the Fick’s law takes the form [8]

φ(V ) = D(V )Vx +
σ2

4
V 2 (4.3)

where φ = φ(V ) is the flux. Substitute (4.3) into (4.2) to get

Vt + φ(V )x = 0, c(V ) = φ′(V ). (4.4)

This nonlinear hyperbolic equation is the conservation law. We can write it as

Vt +

(

D(V )Vx +
σ2

4
V 2

)

x

= 0 in R × (0,∞). (4.5)

Assume that the diffusion coefficient D is a power function [8], or

D(V ) = D0

(

V

V0

)n

for D0, V0 constants and n > 0. (4.6)

Equation (4.5) together with the constitutive assumption (4.6) is what we
call the porous medium equation. The equation governs porous flows through a
porous domain [8]. For our case, n = 1. Expanding (4.5) we get

Vt + D(V )Vxx +

(

D′(V )Vx +
σ2

2
V

)

Vx = 0 (4.7)

where D(V )Vxx is a nonlinear Fickian diffusion term. We recover from the
variable diffusion constant a nonlinear advection term [8]

(

D′(V )Vx +
σ2

2
V

)

Vx.

This implies a propagation signal whose speed is (see [8])

D′(V )Vx +
σ2

2
V.

The term advection (or convection or transport) refers to the physical property’s
horizontal movement (e.g. the horizontal movement of a density wave), see [8].

Comparing the terms in equations (4.2) and (4.7) we conclude that D(V ) =
σ2

2 V . Therefore D′(V ) = σ2

2 . Hence from (4.5) we get the equation

Vt +
σ2

2
(V Vx +

1

2
V 2)x = 0 in R × (0,∞).

We now look for a twice continuously differentiable solution of (4.5) on R.

Proposition 4.2. If ν(ξ) is a twice continuously differentiable function,
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and x and t are the spatial and time variables respectively, there exists a trav-
eling wave solution to equation (4.5) of the form

V (x, t) = ν(x − ct) = ν(ξ) where ξ = x − ct (4.8)

for all (x, t) ∈ R× (0,∞) and D(V ) = σ2

2 V such that V (x, t) is a traveling wave
of permanent form which translates to the right with constant speed c > 0.

Proof. V (x, t) is interpreted as the strength of the signal. Equation (4.8) is
a bounded solution for the (signal) wave profile at time t. When the conditions
ν1 > 0 at ξ → +∞ and ν2 > 0 at ξ → −∞ are added to the equation, the
traveling wave solution is called a wavefront solution. The wavefront solution
is termed as a pulse if V approaches the same constant values at both plus and
minus infinity. Since the initial signal V (x, 0) = ν(x), the profile at time t is
represented by ν(x − ct), which is an initial profile translated to the right ct
spatial, see units [8]. The constant c represents the wave speed for a wave prop-
agating undistorted along the characteristics x−ct = constant in spacetime [8].
We interpret the variable ξ = x− ct as a moving coordinate. By the chain rule:

Vt = −cν ′(ξ), Vx = ν ′(ξ), and Vxx = ν ′′(ξ),

where the prime denotes d
dξ . Substituting these expressions into (4.5), we con-

clude that ν(ξ) must satisfy the nonlinear second order ODE

−cν ′ + Dν ′′ + D′(ν ′)2 +
σ2

2
νν ′ = 0 (4.9)

and hence V solves (4.5).

Assume also that the traveling wave is localized. This means that at large
distances, the solution together with its derivatives are small, or

lim
x−→±∞

V (x, t) = lim
x−→±∞

Vx(x, t) = lim
x−→±∞

Vxx(x, t) = 0.

In this case the function V with the form (4.8) is referred to as a solitary wave,
see [6]. We now impose the localizing boundary conditions

lim
ξ−→±∞

ν(ξ) = lim
ξ−→±∞

ν ′(ξ) = lim
ξ−→±∞

ν ′′(ξ) = 0. (4.10)

For a special case D = 0, (4.5) reduces to the hyperbolic equation

Vt +
σ2

2
V Vx = 0.

Comparing this equation to the basic conservation law (4.4) we get

Vt + φ(V )x = Vt + φ′(V )Vx = Vt + c(V )Vx = Vt +
dx

dt
Vx =

dV

dt
= 0

or V = constant. This means that c = σ2

2 V and that V is constant on the
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characteristic curves. These curves are straight lines since

d2x

dt2
=

dc(V )

dt
= c′(V )

dV

dt
= 0.

Equation (4.9) can now be solved in closed-form. First write it as

d

dξ
(Dν ′) +

d

dξ
(
σ2

4
ν2 − cν) = 0.

Integrating with respect to ξ we get the standard form (see [8])

ν ′ = D−1(cν − σ2

4
ν2 + k) (4.11)

where k is a constant of integration. From the localizing boundary condi-
tions (4.10), k = 0. Equation (4.11) reduces to

0 = cν1 −
σ2

4
ν2
1 = cν2 −

σ2

4
ν2
2

where ν1 > 0 and ν2 > 0 are the two states of the signal at infinity. Therefore

c =
σ2

4
(ν1 + ν2) =

σ2

2

(ν1 + ν2)

2
.

Hence, averaging the two known states at infinity yields the wave speed (see
[8]).

Since D(V ) = σ2

2 V , simplifying (4.11) further we conclude that ν(ξ) satisfies
the first order linear autonomous ODE

2
dν

dξ
=

4c

σ2
− ν.

Rearranging the equation and integrating with respect to ξ gives

ν(ξ) = e

δ − ξ

2 +
4c

σ2

where δ is a constant of integration and hence the solution to (4.5) is

V (x, t) = e
δ−(x−ct)

2 +
4c

σ2
.

Substituting υ = V −1
4 the solution to (4.1) becomes

υ(x, t) =
1

4
e

δ−(x−ct)
2 +

c

σ2
− 1

4
. (4.12)

Substituting the transformations w = υ
ρs and x = lns into (4.12) we get

uss =
1

ρ

(

1

4s3/2
e

ct+δ

2 +
1

s

(

c

σ2
− 1

4

))

.

Integrating uss twice with respect to the spatial variable s, we arrive at the
solution of the nonlinear Black-Scholes PDE (see Theorem 4.1).
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5. Conclusion

We have studied the hedging of derivatives in illiquid markets. Models where the
implementation of a hedging strategy affects the price of the underlying asset
have been considered. The principal contribution in this work is the reduction
of the nonlinear Black-Scholes PDE into a porous medium equation. Assuming
the solution of a forward wave, a classical solution was found for the nonlinear
Black-Scholes equation. We have further found out that feedback effects can
be modeled by a parabolic equation via a temporal solitary wave solution. The
soliton is a localized bounded traveling wave solution. This was used to get
the solution to the nonlinear Black-Scholes equation which can be applied in
pricing a European call option at time t > 0. If we consider the asymptotic
for s → ∞, in the linear case a call option’s price satisfies u(s, t) → constant s.
In the nonlinear case the solution u(s, t) grows faster than in linear as s → ∞
(see the solution in Theorem 4.1). This reflects the fact that option hedging
in illiquid markets is more expensive compared to trading in perfectly liquid
markets.

In conclusion, further research needs to be done to solve the equation using
other boundary conditions. Future work will also involve investigating the
nonlinear porous medium equation using phase-plane techniques.
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