• Login
    View Item 
    •   MUT Research Archive
    • Journal Articles
    • School of Computing and IT (JA)
    • Journal Articles (CI)
    • View Item
    •   MUT Research Archive
    • Journal Articles
    • School of Computing and IT (JA)
    • Journal Articles (CI)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Research Methods in Machine Learning: A Content Analysis

    Thumbnail
    View/Open
    Full Text (742.5Kb)
    Date
    2021-03
    Author
    Wambugu, Jackson K.
    Wambugu, Geoffrey M
    Metadata
    Show full item record
    Abstract
    Research methods in machine learning play a pivotal role since the accuracy and reliability of the results are influenced by the research methods used. The main aims of this paper were to explore current research methods in machine learning, emerging themes, and the implications of those themes in machine learning research. To achieve this the researchers analyzed a total of 100 articles published since 2019 in IEEE journals. This study revealed that Machine learning uses quantitative research methods with experimental research design being the de facto research approach. The study also revealed that researchers nowadays use more than one algorithm to address a problem. Optimal feature selection has also emerged to be a key thing that researchers are using to optimize the performance of Machine learning algorithms. Confusion matrix and its derivatives are still the main ways used to evaluate the performance of algorithms, although researchers are now also considering the processing time taken by an algorithm to execute. Python programming languages together with its libraries are the most used tools in creating, training, and testing models. The most used algorithms in addressing both classification and prediction problems are; Naïve Bayes, Support Vector Machine, Random Forest, Artificial Neural Networks, and Decision Tree. The recurring themes identified in this study are likely to open new frontiers in Machine learning research.
    URI
    http://hdl.handle.net/123456789/4569
    Collections
    • Journal Articles (CI) [118]

    MUT Library copyright © 2017-2024  MUT Library Website
    Contact Us | Send Feedback
     

     

    Browse

    All of Research ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    MUT Library copyright © 2017-2024  MUT Library Website
    Contact Us | Send Feedback