• Login
    View Item 
    •   MUT Research Archive
    • Journal Articles
    • School of Computing and IT (JA)
    • Journal Articles (CI)
    • View Item
    •   MUT Research Archive
    • Journal Articles
    • School of Computing and IT (JA)
    • Journal Articles (CI)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Improving Student Enrollment Prediction Using Ensemble Classifiers

    Thumbnail
    View/Open
    Full Text (220.3Kb)
    Date
    2018
    Author
    Wanjau, Stephen K.
    Muketha, Geoffrey M.
    Metadata
    Show full item record
    Abstract
    In the recent years, data mining has been utilized in education settings for extracting and manipulating data, and for establishing patterns in order to produce useful information for decision making. There is a growing need for higher education institutions to be more informed and knowledgeable about their students, and for them to understand some of the reasons behind students’ choice to enroll and pursue careers. One of the ways in which this can be done is for such institutions to obtain information and knowledge about their students by mining, processing and analyzing the data they accumulate about them. In this paper, we propose a general framework for mining student data enrolled in Science, Technology, Engineering and Mathematics (STEM) using performance weighted ensemble classifiers. We train an ensemble of classification models from enrollment data streams to improve the quality of student data by eliminating noisy instances, and hence improving predictive accuracy. We empirically compare our technique with single model based techniques and show that using ensemble models not only gives better predictive accuracies on student enrollment in STEM, but also provides better rules for understanding the factors that influence student enrollment in STEM disciplines.
    URI
    http://ijcat.com/archieve/volume7/issue3/ijcatr07031003.pdf
    http://hdl.handle.net/123456789/2998
    Collections
    • Journal Articles (CI) [118]

    MUT Library copyright © 2017-2024  MUT Library Website
    Contact Us | Send Feedback
     

     

    Browse

    All of Research ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    MUT Library copyright © 2017-2024  MUT Library Website
    Contact Us | Send Feedback