• Login
    View Item 
    •   MUT Research Archive
    • Journal Articles
    • School of Computing and IT (JA)
    • Journal Articles (CI)
    • View Item
    •   MUT Research Archive
    • Journal Articles
    • School of Computing and IT (JA)
    • Journal Articles (CI)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Data Mining Model for Predicting Student Enrolment in STEM Courses in Higher Education Institutions

    Thumbnail
    View/Open
    ijcatr05111004 Publication.pdf (235.4Kb)
    Date
    2016-11-11
    Author
    Wanjau, Stephen K.
    Metadata
    Show full item record
    Abstract
    Educational data mining is the process of applying data mining tools and techniques to analyze data at educational institutions. In this paper, educational data mining was used to predict enrollment of students in Science, Technology, Engineering and Mathematics (STEM) courses in higher educational institutions. The study examined the extent to which individual, sociodemographic and school-level contextual factors help in pre-identifying successful and unsuccessful students in enrollment in STEM disciplines in Higher Education Institutions in Kenya. The Cross Industry Standard Process for Data Mining framework was applied to a dataset drawn from the first, second and third year undergraduate female students enrolled in STEM disciplines in one University in Kenya to model student enrollment. Feature selection was used to rank the predictor variables by their importance for further analysis. Various predictive algorithms were evaluated in predicting enrollment of students in STEM courses. Empirical results showed the following: (i) the most important factors separating successful from unsuccessful students are: High School final grade, teacher inspiration, career flexibility, pre-university awareness and mathematics grade. (ii) among classification algorithms for prediction, decision tree (CART) was the most successful classifier with an overall percentage of correct classification of 85.2%. This paper showcases the importance of Prediction and Classification based data mining algorithms in the field of education and also presents some promising future lines.
    URI
    http://hdl.handle.net/123456789/125
    https://www.researchgate.net/publication/309754595_Data_Mining_Model_for_Predicting_Student_Enrolment_in_STEM_Courses_in_Higher_Education_Institutions
    Collections
    • Journal Articles (CI) [118]

    MUT Library copyright © 2017-2024  MUT Library Website
    Contact Us | Send Feedback
     

     

    Browse

    All of Research ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    MUT Library copyright © 2017-2024  MUT Library Website
    Contact Us | Send Feedback