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 

ABSTRACT 

 

Transformer-based models such as GPT, T5, BART, and 

PEGASUS have made substantial progress in text 

summarization, a sub-domain of natural language processing 

that entails extracting important information from lengthy 

texts. The main objective of this research was to conduct a 

comparative analysis of these four transformer-based models 

based on their performance in text summarization of news 

articles. In achieving this objective, the transformer models 

pre-trained on extensive datasets were fine-tuned on the 

CNN/DailyMail dataset using a low learning rate to preserve 

the learned representations. The T5 transformer records the 

highest scores of 35.12, 22.75, 32.82, and 28.59 in ROUGE-1, 

ROUGE-2, ROUGE-L, and ROUGE-Lsum respectively, 

surpassing GPT, BART, and PEGASUS across all ROUGE 

metrics. The findings deduced from this study establish the 

proficiency of encoder-decoder models such as T5 in summary 

generation. Furthermore, the findings also demonstrated that 

the fine-tuning process's effectiveness in pre-trained models is 

improved when the pre-training objective closely aligns with 

the downstream task. 

 

Key words: Natural Language Processing, ROUGE Metrics, 

Text Summarization, Transformers. 

 

1. INTRODUCTION 

 

In an era of information abundance, news articles have become 

a primary source of information and knowledge dissemination 

[1]. Staying informed is essential yet time-consuming, with the 

constant influx of diverse news stories. Text summarization, a 

transformative branch of natural language processing, offers 

an elegant solution to this problem [1], [2]. The ability to 

automatically extract the essential information from lengthy 

 
 

news articles and present it in a concise, coherent summary not 

only enhances information accessibility but also frees readers 

from the demanding task of reading through voluminous text 

[3]. This study, therefore, explores text summarization within 

news article contexts, emphasizing the revolutionary 

importance of transformers in the domain of natural language 

processing. 

 

Transformers, a class of neural networks, have redefined the 

landscape of natural language processing [4]. Since their 

inception, these models have consistently outclassed 

performance benchmarks across various language tasks. The 

self-attention mechanism, which was introduced in the paper 

"Attention is All You Need" by Vaswani et al., is the central 

component of the architecture of transformer-based models 

[5], [6],[7]. With the introduction of this attention mechanism, 

the models may weigh various sections of the input sequences 

and give varying attention weights based on previous 

sequences. In the self-attention mechanism, each token has 

three vectors: Key (K), Query (Q), and Value (V), which are 

the linear projections of the input embeddings. The attention 

score between the vectors is calculated using a dot product to 

compute the relevance between corresponding tokens. The 

attention scores are then converted into probabilistic 

distributions using a softmax activation function [6]. 

Transformers' ability to process sequential data 

representations has improved due to their increased capacity to 

pay attention to different parts of the input sequence 

dynamically. Such advancements have led to remarkable gains 

in several natural language processing tasks and paved the way 

for text summarization techniques capable of generating more 

contextually aware and human-like summaries. 

 

Therefore, this paper's primary objective is to compare and 

analyze how well four state-of-the-art transformer-based news 

article summarization models perform. The following is a brief 

description of how the rest of this paper is organized: in 
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Section 2, we have the related works, and in Section 3.0, the 

methodology is described. Section 4 covers the results of this 

study and a discussion of their implications. In Section 5, the 

study's conclusions are discussed, along with 

recommendations for further research. 

 

2. RELATED WORKS 

 

Text summarization is among the application areas of the 

natural language processing domain, and it deals with the 

extraction of the most significant content from the original text 

while maintaining its main idea [8]. Two main types of text 

summarization exist, namely extractive and abstractive. While 

the abstractive type of summarization goes further and creates 

succinct summaries by interpretation and paraphrasing, 

extractive summarization identifies and chooses the most 

significant sentences from the provided text [9], [10]. 

 

The trajectory of text summarization milestones has 

undergone remarkable transformations, progressing from 

frequency-based approaches to the incorporation of 

sophisticated machine-learning techniques [11]. The latest 

stride in this evolution involves transformer-based models, 

which marks a key advancement that has significantly elevated 

natural language processing. Text summarization researchers 

commonly leverage diverse datasets, including the 

CNN/DailyMail, Newsroom, New York Times (NYT), 

Document Understanding Conference (DUC), and the 

Gigaword datasets to explore and enhance techniques in this 

dynamic and rapidly evolving domain [12].  

 

In this study [13], three state-of-the-art transformers were 

compared across few-shot and zero-shot learning for both 

abstractive text summarization for multi-documents, whereby 

the summary was based on a user-defined query. The 

implementation details of this study were as follows: a batch 

size of 8 and 512 tokens as the maximum sequence length, 20 

training epochs, and three warm-up steps on a V100X 

GPU-powered machine. Four datasets, which were sourced 

from the TensorFlow datasets catalogue, were used in this 

study. This study's findings pointed out statistically significant 

differences between transformer-based models trained in 

zero-shot settings; however, the difference becomes negligible 

after a few examples in few-shot learning.  

 

In this study [14], a comparative analysis of the T5 transformer 

was conducted on abstractive text summarization across three 

benchmark datasets: CNN/DailyMail, MSMO, and the 

XSUM. The evaluation criteria employed to gauge the 

efficiency of the T5 model were the BLEU and ROUGE 

metrics. The experiment was run on PyTorch with the Adam 

optimizer, with 1e-3 as the learning rate for model 

optimization across the training data's epochs and eight as the 

batch size. The MSMO dataset emerged as exceptionally 

high-performing, showcasing the T5 model's exceptional 

proficiency with the highest recorded scores. The findings of 

this study demonstrated that pre-trained transformers can 

produce concise summaries of the provided input text.  

 

A comparative analysis of auto-encoder transformers, 

auto-regressive, and sequence-to-sequence-based models was 

conducted in this study [15] for both extractive and abstractive 

summarization. The dataset used in this study was the BBC 

news dataset, and the evaluation metrics were ROUGE-1, 2, 

and L, which provided a comprehensive analysis of the 

model's performance across different aspects of 

summarization quality. The experiments in this study were 

conducted using a varied set of hyperparameters to come up 

with the optimal set to achieve promising results. The findings 

of this study indicated that abstractive summarization takes 

more time than extractive but delivers a better summary in 

terms of coherence and fluency.  

 

However, there is a need to conduct a comparative study under 

the same environment set-up to guarantee the comparability of 

the evaluation results, given that the existing studies in this 

domain have been conducted under different experimental 

variations. This has, therefore, inspired the need to conduct the 

comparative study using the same dataset and hyperparameters 

across the four selected models while ensuring fairness and 

uniformity without the risk of introducing bias and 

inconsistencies in the evaluation results. 

  

3. METHODOLOGY 

 

This section covers the transformer-based models selected for 

this comparative study, the detailed experimental set-up, the 

dataset, the training process, and the evaluation metrics used.  

 

3.1 The Transformers  

3.1.1 GPT 

Generative Pre-trained Transformers (GPT) are a series of 

transformer-based models that OpenAI introduced. Predicting 

the subsequent token in a series using the previous context is a 

well-known autoregressive feature of GPT models. The 

multi-head attention and a position-wise feedforward network 

(FFN) are included in a stack of transformer layers that make 

up its architectural design. [16].  Massive text data corpora 

have been leveraged to pretrain these GPT models, and they 

have delivered cutting-edge performance in a number of 

natural language processing applications. With different 

transformer layers, attention heads, and model parameters, 
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GPT has different variants, such as gpt-2, gpt-2 medium, gpt-2 

large, and gpt-2 xl. 

 

3.1.2 T5 

T5 (Text-To-Text Transfer Transformer) stands out as a 

versatile transformer model that was developed by Google 

Research. Its unique characteristic lies in a unified text-to-text 

framework that maps any NLP task as a text-to-text problem 

[17]. The architecture consists of a composition of encoders 

and decoders, where the encoder processes the input text and 

the decoder provides the corresponding output text. To handle 

input text effectively and make predictions, the encoder and 

decoder stacks integrate self-attention and feedforward neural 

network layers [17]. The final decoder layer's output 

undergoes processing through a dense layer with softmax as 

the activation function. T5 has various variants, such as 

T5-Small, T5-Base, T5-Large, T5-3B, and T5-11B, each 

distinguished by varying parameters. 

 

3.1.3 BART 

The transformer-based BART model, which Facebook AI 

released, refers to a Bidirectional and Auto-Regressive 

Transformer. BART operates on a typical architecture that 

follows a sequence-to-sequence approach to process input. 

The architecture is made up of a bi-directional encoder and a 

characteristic autoregressive bi-directional decoder [18]. One 

notable aspect of BART is its auto-regressive nature, where 

the model is trained to generate target sequences from 

corrupted input sequences. The encoder receives a corrupted 

version of the tokens, while the decoder receives the original 

tokens to mask particular works for prediction.  

 

3.1.4 PEGASUS 

PEGASUS is a sequence-to-sequence type of transformer 

explicitly designed for abstractive summarization. Developed 

by Google Research, PEGASUS is pre-trained using a large 

corpus through the gap-sentence generation approach, 

whereby some sentences are removed from the provided input 

sequence, and the transformer is required to restructure the 

output sequence from the provided input tokens in the form of 

a sequence that is corrupted [19]. The architecture of 

PEGASUS includes an encoder-decoder framework, similar to 

BART, and its pre-training objectives include Masked 

Language Modelling (MLM) and Gap Sentence Generation 

(GSG). Table 1 below shows the number of parameters across 

variants of the described transformer-based models and their 

specific types of architecture.  

 

 

 

 

Table 1: Variations of the Transformer Models. 

Transformer 
Parameters Type of 

Architecture 
base large 

GPT 124M 762M Decoder 

T5 220M 770M Encoder-Decoder 

PEGASUS 175M 568M Encoder-Decoder 

BART 140M 400M Encoder-Decoder 

 

3.2 Experiment Set-up 

3.2.1 Experimental Materials 

The experiment was conducted using a Windows 10 (64-bit) 

ProBook laptop with 16GB RAM, AMD Radeon GPU, and 

core i7 Processor. Google Collaboratory environment was 

used to run the models on a Python Notebook. The Colab 

environment offered supplementary hardware accelerating 

GPUs and provided access to CUDA version 12.2, the 

Transformers library version 4.35.2, and PyTorch version 2.0.  

 

3.2.2 Dataset Description 

The Hugging Face hub provided the CNN/DailyMail dataset 

used in this experiment. This dataset is a widely adopted 

benchmark in natural language processing, particularly for 

applications such as text summarization. This dataset includes 

over 300,000 pairs of articles and the human-generated 

summaries that correspond with them. For this study, we used 

the 3.0.0 version of this dataset, which is a non-anonymized 

version specifically curated for abstractive summarization. 

 

The CNN/DailyMail Dataset's train, validation, and test set 

distribution is displayed in Table 2 below. The train split 

contains 287,226 instances, whereas the validation and the test 

split have 13,368 and 11,490 instances, respectively.  

 

Table 2: Distribution of the CNN/DailyMail Dataset 

CNN/DailyMail Dataset Distribution 

Dataset Split No. of Instances 

Train Set 287,226 

Validation Set 13,368 

Test Set 11,490 

 

3.2.3 Data Pre-Processing 

Data preprocessing was conducted to prepare the dataset into a 

requisite format for the transformers. Tokenization was 

carried out to transform the input sequences into a numerical 

representation that could be fed into the models using the 

default auto tokenizers for each model. The tokenizer receives 

the input text and converts it into input tensors, each with a 
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corresponding attention mask and input ids. The input 

sequences were also truncated and padded to fit the set input 

length of 512 tokens to allow the model to process all the 

sequences simultaneously in a batch. Longer input texts were 

pruned off, while shorter inputs were padded with special 

tokens to fit the model's token limit. Data splitting was done 

guided by the conventions of deep learning into a ratio split 

whereby 70% went into the train set, 20% was used for 

validation, and 10% went to the test set. 

 

3.2.4 Hyperparameters  

All of the selected transformers in this study were subjected to 

the same set of hyperparameters to guarantee the 

comparability of the results. Therefore, we used a fixed 

number of attention heads in the model’s architecture, set at 8, 

and configured the dimension of the feedforward neural 

network in each transformer block at 2048. Given that this was 

a fine-tuning task, a low learning rate of 1e-5 and a weight 

decay of 10
-2

 were adopted. The AdamW optimizer was set for 

these pre-trained models to optimize the model and avoid 

catastrophic forgetting of the learned representations. With a 

batch size of 6, each transformer model was trained for five 

epochs to minimize the memory consumed during each 

training and validation iteration. To expedite the training 

process, the number of steps required to accumulate gradients 

before executing an update pass was fixed at 16. The set 

number of epochs guided the mode in which evaluation was 

done and the save strategy for the models to regulate the 

number of saved checkpoints.  

 

3.2.5 Model Training  

The pre-trained models were loaded directly from the Hugging 

Face hub together with their learned weights. Training the 

models was initiated by calling the Trainer containing the 

defined training arguments to configure the training loop. All 

the parameters of the pre-trained models were updated over a 

lower learning rate to avoid undoing the learned 

representations from the pre-training steps. The training 

entailed calculating the loss function, backpropagating to 

calculate the gradient, and then updating the parameters 

guided by the defined gradient accumulation steps. This 

process was informed by the target task being similar to the 

pre-training task of the models, and also as observed in this 

study [20]. During the training phase, we adopted a learning 

rate of 1e-5, the AdamW optimizer for model optimization, 

and set cross-entropy loss as the requisite loss function. The 

per-device train and validation batch size were set to 6 to track 

the model's performance during the training loop.  

 

 

 

3.2.6 Evaluation  

This study used the ROUGE (Recall Oriented Understudy for 

Gisting Evaluation) metrics to offer a quantitative measure of 

how well the generated text aligns with the reference summary. 

Four different ROUGE metrics, namely, ROUGE-1, 

ROUGE-2, ROUGE-L, and ROUGE-Lsum, were used to 

evaluate the experimental results quantitively. These metrics 

provide a direct way of comparing the performance of 

different models, and they are a widely adopted evaluation 

benchmark in text summarization research [21]. The metrics 

were defined through the compute metric function and passed 

to the Trainer to return the rouge scores.  

The mathematical formulation of the ROUGE metric is 

described below in the following equation.  

 

 
 

Whereby; 

{reference} denotes the reference summaries. 

Count (Nn-gram) represents the count of n-grams in the 

reference summary. 

Countmatch (Nn-gram) is the number of n-grams in the 

reference and generated summary. 

 

The following is a step-wise description of the procedural 

algorithm describing the flow of the experiment, starting with 

the loading of the dataset up to model evaluation.  

 

Algorithm 1: The flow of the experiment  

Input: A sample input text  

Output: Rouge Scores of the generated output 

             Begin Algorithm 

i. Loading the Dataset 

ii. Preprocessing the Dataset 

iii. Load the Pre-trained Models from Hugging Face 

iv. Define the training arguments 

v. Train the models using the Trainer  

vi. Evaluating the models using ROUGE metrics 

             End Algorithm 

4. RESULTS 

 

This section provides a comprehensive performance 

evaluation report of the four transformers—GPT, BART, T5, 

and PEGASUS. We present four ROUGE metric scores for 

each considered model, providing a detailed insight into their 

summarization capabilities. Table 3 below displays the 

recorded Rouge metrics, showing that T5 performs better, with 
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a rouge score of 35.12, 22.75, 32.82, and 28.59 for Rouge-1, 

Rouge-2, Rouge-L, and Rouge-Lsum, respectively.  

 

Table 3: ROUGE scores of the Transformers. 

Transformer Rouge-1 Rouge-2 Rouge-L   Rouge-

Lsum 

GPT 24.83 16.92 22.14 21.07 

BART 27.61 18.37 28.52 25.84 

T5 35.12 22.75 32.82 28.59 

PEGASUS 33.69 21.58 28.43 23.76 

 

Based on the Rouge metrics, T5 is superior in comparison with 

the other models since this model returns the highest Rouge 

scores for the four Rouge metrics considered in this study. The 

ability of the T5 model to effectively capture unigrams and 

bigrams and maintain coherence in the generated summaries 

places T5 as the most effective model for a text summarization 

task. BART and PEGASUS closely compete with T5, with 

BART excelling in Rouge-L and Rouge-Lsum, while 

PEGASUS consistently performs well across all metrics but 

still falls short of T5. The GPT model exhibits lower Rouge 

scores overall, with 24.83, 16.92, 22.14, and 21.07 for the four 

Rouge metrics used in this study. Complementing Table 3, the 

bar graph in Figure 1 below also demonstrates the 

performance of each model on Rouge metrics. 

 

 
Figure 1: Rouge Scores for GPT, BART, T5, and PEGASUS 

on the CNN/DailyMail dataset 

The time each model takes across the epochs of the training 

data offers insights into the convergence patterns of the 

models as they go through the training loop. The GPT model 

displays a comparatively constant reduction in time as the 

number of epochs rises, which is suggestive of the model's 

parameters and rapid convergence. T5 shows an initial 

increase in the first epochs followed by a stable gradual 

decrease, showing that this model requires a few epochs to 

adapt and stabilize. PEGASUS demonstrates an almost similar 

curve to GPT; however, it starts with a higher initial time, 

implying a potentially slower convergence rate. BART shows 

a steady reduction in the final epochs, emphasizing its ability 

to adapt to the training data despite a high initial time in the 

first epochs. The line graph in Figure 2 illustrates the 

convergence patterns of the models used in this study.  

 

 
Figure 2: Training Time (Hours) taken by the Transformers 

across 5 epochs 

4.1 Discussion  

 

The performance metrics emphasize T5's notable superiority 

over GPT, BART, and PEGASUS. T5 consistently records 

high scores across all Rouge metrics, showcasing its 

exceptional ability to capture unigram and bigram overlaps 

and maintain coherence in generated summaries. This 

performance is attributed to its text-to-text framework that 

transforms any given natural language processing task into a 

text generation task using prefixes without changing its 

objective function or architecture. BART records competitive 

Rouge scores but falls slightly behind T5, particularly in 

Rouge-1 and Rouge-2, showing that it struggles in accurately 

representing unigrams and bigrams of a particular text since its 

decoder has to restructure the provided sequence from the 
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partially masked input sequences. PEGASUS excels in 

Rouge-L and Rouge-Lsum since the gap sentence generation 

objective masks the essential sentences from the input 

sequence. It feeds them to the decoder, which generates them 

together as a single output sequence. GPT trailing in all Rouge 

metrics shows that this architecture was ideally pre-trained for 

text generation compared to the other three models, which 

were pre-trained for summarization, among other closely 

related tasks.  

 

The line graph in Figure 2 represents the time taken by four 

transformers (GPT, T5, BART, and PEGASUS) over five 

epochs, revealing distinctive patterns in their convergence 

behavior. GPT exhibits a consistent decrease in time, 

highlighting its steady convergence due to fewer parameters, 

making this model more diminutive than the other models with 

many parameters. T5 displays initial fluctuations in the first 

epochs but stabilizes and converges smoothly, demonstrating 

an adaptive learning curve across the training data, which is a 

desirable trait in neural networks. BART shows slow 

convergence, particularly in the early epochs, indicative of its 

complex model architecture. The curve displayed by this 

model is attributed to its autoregressive nature that makes its 

architecture operate bi-directionally. Although PEGASUS 

shows a consistent decrease in time, it starts with a higher 

initial duration, implying a potentially slower initial 

convergence due to its vast number of parameters and a large 

model dimension. The noted observations emphasize the need 

to consider the convergence pattern when selecting a 

transformer-based model tailored to specific task 

requirements. 

5. CONCLUSION 

 

The comparative study conducted in this paper for the 

transformer-based models for text summarization has 

underscored T5's summarization capability and desirable 

convergence behaviour. T5 consistently outperformed GPT, 

BART, and PEGASUS across all Rouge metrics, showcasing 

its proficiency compared to the other models. T5's 

convergence pattern also demonstrated an adaptive learning 

curve, showing the model's ability to converge desirably after 

a few epochs. The findings also highlight the crucial role of a 

closely aligned pre-training objective and model 

generalizability, indicating that optimal fine-tuning occurs 

when the pre-training objective is almost similar to the task at 

hand. These findings contribute to the broader understanding 

of natural language processing and offer valuable implications 

for future research in text summarization. Experimenting using 

datasets other than the CNN/DailyMail dataset could be part 

of this study's future research direction. Another potential 

direction for prospective study includes enhancing the T5, the 

best model, to provide better summaries. 

REFERENCES 

1. I. Awasthi, K. Gupta, P. S. Bhogal, S. S. Anand, and P. K. 

Soni, "Natural language processing (NLP) based text 

summarization - A survey," in 2021 6th International 

Conference on Inventive Computation Technologies 

(ICICT), Coimbatore, India: IEEE, doi: 

10.1109/ICICT50816.2021.9358703. 

2. P. Raundale and H. Shekhar, "Analytical study of text 

summarization techniques," in 2021 Asian Conference 

on Innovation in Technology (ASIANCON), PUNE, 

India: IEEE, Aug. 2021, pp. 1–4. doi: 

10.1109/ASIANCON51346.2021.9544804. 

3. A. P. Widyassari, A. Affandy, E. Noersasongko, A. Z. 

Fanani, A. Syukur, and R. S. Basuki, "Literature review 

of automatic text summarization: Research trend, 

dataset, and method," in 2019 International Conference 

on Information and Communications Technology 

(ICOIACT), Yogyakarta, Indonesia: IEEE, Jul. 2019, pp. 

491–496. doi: 10.1109/ICOIACT46704.2019.8938454. 

4. L. Tunstall, L. von Werra, and T. Wolf, Natural 

language processing with transformers: building 

language applications with Hugging Face, [First 

edition]. Sebastopol, CA: O'Reilly Media, Inc., 2022. 

5. F. Zhang, G. An, and Q. Ruan, "Transformer-based 

natural language understanding and generation," in 

2022 16th IEEE International Conference on Signal 

Processing (ICSP), Beijing, China: IEEE, Oct. 2022, pp. 

281–284. doi: 10.1109/ICSP56322.2022.9965301. 

6. A. Gillioz, J. Casas, E. Mugellini, and O. A. Khaled, 

"Overview of the transformer-based models for NLP 

tasks," presented at the 2020 Federated Conference on 

Computer Science and Information Systems, Sep. 2020, 

pp. 179–183. doi: 10.15439/2020F20. 

7. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., 

Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). 

Attention is all you need. Advances in neural 

information processing systems, 30 

8. H. S., A. S., A. V., and R. K. Grace, "Summarization of 

news articles using transformers," in 2022 5th 

International Conference on Advances in Science and 

Technology (ICAST), Mumbai, India: IEEE, Dec. 2022, 

pp. 159–163. doi: 

10.1109/ICAST55766.2022.10039608. 

9. H. Siddiqui, S. Siddiqui, M. Rawat, A. Maan, S. Dhiman, 

and M. Asad, "Text summarization using extractive 

techniques," in 2021 3rd International Conference on 

Advances in Computing, Communication Control and 

Networking (ICAC3N), Greater Noida, India: IEEE, Dec. 

2021, pp. 28–31. doi: 

10.1109/ICAC3N53548.2021.9725501. 

10. M. A. I. Talukder, S. Abujar, A. K. M. Masum, S. Akter, 

and S. A. Hossain, "Comparative study on abstractive 

text summarization," in 2020 11th International 

Conference on Computing, Communication and 



Charles Munyao Muia et al.,  International Journal of Advanced Trends in Computer Science and Engineering, 13(2), March - April 2024, 37- 43 

43 

 

 

Networking Technologies (ICCCNT), Kharagpur, India: 

IEEE, Jul. 2020, pp. 1–4. doi 

10.1109/ICCCNT49239.2020.9225657. 

11. C. Orăsan, "Automatic summarization: 25 years on," 

Nat. Lang. Eng., vol. 25, no. 06, pp. 735–751, Nov. 2019, 

doi: 10.1017/S1351324919000524. 

12. J. Li, C. Zhang, X. Chen, Y. Cao, P. Liao, and P. Zhang, 

"Abstractive text summarization with multi-head 

attention," in 2019 International Joint Conference on 

Neural Networks (IJCNN), Budapest, Hungary: IEEE, 

Jul. 2019, pp. 1–8. doi: 10.1109/IJCNN.2019.8851885. 

13. T. Goodwin, M. Savery, and D. Demner-Fushman, 

"Flight of the pegasus? Comparing transformers on 

few-shot and zero-shot multi-document abstractive 

summarization," in Proceedings of the 28th 

International Conference on Computational Linguistics, 

Barcelona, Spain pp. 5640–5646. doi: 

10.18653/v1/2020.coling-main.494. 

14. T. T, M. Borah, P. Dadure, and P. Pakray, "Comparative 

analysis of T5 model for abstractive text 

summarization on different datasets," SSRN Journal, 

2022, doi: 10.2139/ssrn.4096413. 

15. A. Choudhary, M. Alugubelly, and R. Bhargava, "A 

comparative study on transformer-based news 

summarization," in 2023 15th International Conference 

on Developments in eSystems Engineering (DeSE), 

Baghdad & Anbar, Iraq: IEEE, Jan. 2023, pp. 256–261. 

doi: 10.1109/DeSE58274.2023.10099798. 

16. Q. Zhu, L. Li, L. Bai, and F. Hu, "Chinese text 

summarization based on fine-tuned gpt2," in Third 

International Conference on Electronics and 

Communication; Network and Computer Technology 

(ECNCT 2021), Harbin, China doi: 10.1117/12.2629132. 

17. C. Raffel et al., "Exploring the limits of transfer 

learning with a unified text-to-text transformer," 

Journal of Machine Learning Research, vol. 21, no. 140, 

pp. 1–67, Jan. 2020. 

18. Lewis, Mike, Yinhan Liu, Naman Goyal, Marjan 

Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves 

Stoyanov, and Luke Zettlemoyer. "Bart: Denoising 

sequence-to-sequence pre-training for natural 

language generation, translation, and 

comprehension." arXiv preprint 

arXiv:1910.13461 (2019). 

19. J. Zhang, Y. Zhao, M. A. Saleh, and P. Liu, "PEGASUS: 

Pre-training with extracted gap-sentences for 

abstractive summarization," International Conference 

on Machine Learning, vol. 1, pp. 11328–11339, Jul. 

2020. 

20. J. Kamiri, G. M. Wambugu, and A. M. Oirere, "A 

comparative study of deep learning and transfer 

learning in detection of diabetic retinopathy," 

IJCATR, vol. 11, no. 07, pp. 247–254, Jul. 2022, doi: 

10.7753/IJCATR1107.1001. 

21. M. Bhandari, P. Gour, A. Ashfaq, P. Liu, and G. Neubig, 

"Re-evaluating evaluation in text summarization," 

2020, doi: 10.48550/.2010.07100. 


