
Catherine Wambui Mukunga, John Gichuki Ndia & Geoffrey Wambugu Mariga

International Journal of Software Engineering (IJSE), Volume (10) : Issue (2) : 2022 22
ISSN: 2180-1320, https://www.cscjournals.org/journals/IJSE/description.php

Factors Affecting Software Maintenance Cost of Python
Programs

Catherine Wambui Mukunga cathymukunga@gmail.com
School of Computing and Information Technology
Murang’a University of Technology
Murang’a, Kenya

John Gichuki Ndia jndia@mut.ac.ke
School of Computing and Information Technology
Murang’a University of Technology
Murang’a, Kenya

Geoffrey Mariga Wambugu gmariga@mut.ac.ke
School of Computing and Information Technology
Murang’a University of Technology
Murang’a, Kenya

Abstract

One of the primary areas of software project management is cost estimation. The cost estimation
problem remains unsolved today because of the ineffective cost estimation techniques which are
unsuitable for handling current development methods. Software maintenance costs can be
estimated using a variety of models such as the Construction Cost Model (COCOMO), Software
Life Cycle Management (SLIM), Software maintenance project effort estimation model and others
but more work needs to be done in developing models that can accommodate programs from
new programming paradigms. The primary objective of this research was to identify factors
affecting the software maintenance cost of python programs and rank them according to their
relevance. To achieve the objective, a literature review study was done to identify factors that
influence software maintenance costs followed by an expert opinion survey to ascertain which of
the factors were relevant for Python programs. Fifty two (52) Python developers and project
managers were identified using snowballing technique and asked to rate the cost drivers in order
of relevance using a five point scale. Descriptive statistics were used to carry out the analysis of
the results. The results indicated that all the eighteen (18) factors affected the maintenance cost
of Python programs. The factors were ranked based on the percentage mean of frequencies. Six
additional factors were also identified by the experts and ranked. The factors will be considered
as input parameters for a cost estimation model to be developed in the near future for estimating
the cost of maintaining python programs.

KEYWORDS: Software Maintenance, Cost Drivers, Expert Opinion, Cost Estimation.

1. INTRODUCTION
The importance of software in the 21st century cannot be under estimated, since almost all
industries from education, sports, health, and security to governance are enabled by software.
Therefore the quality of the software should be of a high level to ensure accurate results (Shrove
& Jovanov, 2020). Maintenance is the final step of the Software development process (Aakriti &
Shreta, 2015). According to CMRP (2014) corrective maintenance deals with changes to address
faults, adaptive maintenance aims to keep the software up-to-date, perfective maintenance
ensures the product accommodates proposed requirements and preventive maintenance ensures
software is free from failure.

Catherine Wambui Mukunga, John Gichuki Ndia & Geoffrey Wambugu Mariga

International Journal of Software Engineering (IJSE), Volume (10) : Issue (2) : 2022 23
ISSN: 2180-1320, https://www.cscjournals.org/journals/IJSE/description.php

Cost estimation for the maintenance phase is required to determine software reliability, increase
productivity, project planning, control, and adaptability. An observation made by Islam and Katiyar
(2014) indicates that software maintenance cost is gradually growing with high levels of software
life cost relating to the maintenance stage. Controlling the elements that influence software
maintenance could aid in cost reduction, predictability, increased productivity, project planning,
control, and adaptation of the softwareSingh et al. (2019). According to Pragya and Varun (2012),
accurate cost estimation of maintenance can be an estimate of how much resources should be
committed to a project and determine the priority of projects. Proper cost estimation also
promotes easier management and resource control (Alija, 2017).

Python is described by Chen et al. (2016) as an interpreted and high-level programming language
invented by Guido von Rossum with full support for object orientation. Strongly built data
structures, binding and linking existing components or services make python suitable for Rapid
Application Development and scripting (Saabith et al., 2019). Python is a programming language
that enables programmers to effectively connect different sub-systems, promote program
modularity and reuse of code (Dev, 2020). Python is a free commercial language that is the 4th
most popular out of 100 according to the Importance of Being Earnest index (TIOBE)(index,
2022). Public platforms where programmers learn, collaborate and share code such as GitHub
shows how developers largely use Python (github, 2022). Interest in learning python language
can also be confirmed through OpenHub which contains volumes of publicly accessible software.
One of the most significant bibliographic databases in the academic world Scopus reveals the
growing number of applications using the python language.

Though there are several cost estimation models such as the COCOMO, they are unsuitable for
the object oriented paradigm (Kukreja & Garg, 2017). It has also been previously argued that
COCOMO has some inaccuracies hence the need to revise the model (Obot et al., 2022).
Furthermore, python programs are unique from other Object Oriented based programs (Yoo &
Lee, 2013) and therefore the existing models cannot precisely predict the maintenance cost of
python programs. The work by Alija (2017) has identified software maintenance cost drivers
based on a literature review but there is a need to verify and rank the said factors through a
primary study.

This work is organized into various sections; section two describes the software cost estimation
model COCOMO’s versions and the factors influencing software maintenance cost. Section three
explains the design and validation of the survey instrument, a procedure for conducting the expert
survey and the results. Section four is a discussion of the results obtained from this study. The
study is concluded in section five.

2. LITERATURE REVIEW
Factors affecting software maintenance costs were identified by conducting a literature review. A
combination of reference list and keywords were adopted as the search strategy. Brereton et al.
(2007)Identified seven electronic sources namely; IEEExplore, ACM Digital library, Google
scholar, Citeseer library, ScienceDirect, SpringerLink and Scopus as the most relevant sources to
Software Engineers. The search covered all studies on software maintenance cost estimation
specifically journal papers, conference proceedings and technical reports from the seven sources
between the period 2010 and 2022. Factors mentioned in two or more studies were considered
for this study.

2.1 Software Cost Estimation Models

Software cost estimation is defined to be a process for predicting development effort (Sangeetha
et al.,2012). A study byKeim et al. (2014) defined a software cost estimation model as an indirect
measure that predicts the cost of a project with the purpose of budgeting, analyzing risks, project
planning and improving the software.

There exist estimation models that implement software maintenance cost influencing factors such
as the Constructive Cost Model (COCOMO). The Constructive Cost Model was developed by

Catherine Wambui Mukunga, John Gichuki Ndia & Geoffrey Wambugu Mariga

International Journal of Software Engineering (IJSE), Volume (10) : Issue (2) : 2022 24
ISSN: 2180-1320, https://www.cscjournals.org/journals/IJSE/description.php

Barry Boehm in 1981 and was applied in estimating development cost, man-hours and project
schedule as explained in (Boehm, 1983). An earlier Version of COCOMO is the COCOMO 81
which consists of; Basic COCOMO, Intermediate COCOMO and Detailed COCOMO. A later
version is COCOMO 2 as mentioned in (Boehm, 1983). Basic COCOMO version can be
implemented on organic, semi-detached and embedded project types as explained in
(Saljoughinejad & Khatibi, 2018).

Basic COCOMO mathematical statements are presented below as explained in(Boehm, 1983)

Effort Applied (E) = ab (KLOC)bb[man-months] (1)

Development Time (D) = cb (Effort Applied)db [months] (2)

People required (P) = Effort Applied / Development Time [count]. (3)

The study by Boehm (1983) explains that the basic COCOMO version was designed to work on
estimates from the size of a project which is expressed by kilo lines of code (KLOC). A limitation
mentioned by Boehm (1983) is that Basic COCOMO only considers annual change of traffic for
maintenance and leaves out factors related to hardware and personnel aspects. A further
drawback of the basic COCOMO is mentioned by Boehm et al. (2000) indicating it could not
estimate the costs of software from new life cycle procedures and capabilities. Such limitations of
the Basic COCOMO led to the intermediate COCOMO model.

The study by Boehm et al. (2000) explains that the intermediate model computes effort from
program size in KLOC and four cost drivers, with each driver having some attributes. Attributes
affiliated with software products comprise of how operational the software is, the size of database
application and ease of product’s understandability and implementation; Hardware elements
include; the ability of the analyst, software engineering skills, and a rich experience with
programming language while Project attributes include the application of software engineering
tools and methods. Boehm (1983) commented that the incorporation of cost drivers in the
intermediate model increased its accuracy by 20%. The study by Boehm (1983)has described the
Intermediate COCOMO formula to be:

E= ai (KLoC) (
b
i) * EAF (4)

Effort (E)is expressed in person-months, size is expressed as Kilo Lines of code (KLOC) and EAF
is an effort adjustment factor which is the product of the effort multipliers for each cost driver.
Values of aand b depend on the project categories of organic, semi-detached and embedded.

The intermediate COCOMO accommodates sensitivity analysis by altering the ratings of cost
drivers.

In an essay reviewed by Bryant & Kirkham (1983) the authors argue that Boehm presented a
table of ratings for each cost driver but only alteration of software reliability and some of the
personnel attributes are discussed leaving other cost drivers unexamined.

Kitchenham and Taylor(1987) explain that the Detailed COCOMO can counter the drawbacks of
the Intermediate model through phase-wise cost driver implementation. The phases of the Detail
COCOMO model include planning and requirements, designing of the system, detailed design,
module coding and testing and cost constructive model phases as listed in Boehm (2000). The
study further explains that effort is computed from program size and cost drivers according to the
phases.

Boehm et al. (2009) described the COCOMO II model as a COCOMO 81 update to address
software development practices in the 1990s and 2000s. According to Boehm et al.
(2009)COCOMO II comprises of the Application Composition Model, which is an early stage
model that makes assumptions of systems being developed from components that are reusable,

Catherine Wambui Mukunga, John Gichuki Ndia & Geoffrey Wambugu Mariga

International Journal of Software Engineering (IJSE), Volume (10) : Issue (2) : 2022 25
ISSN: 2180-1320, https://www.cscjournals.org/journals/IJSE/description.php

database programming, the early Design Model whose primary purpose is to compute
estimations of a project’s cost and schedule and the Post Architectural model. COCOMO II
consists of cost drivers that are used with the Post Architecture model. The Post Architecture
model factors include; required reliability, size of the database, complexity of the product, product
reusability, product documentation, time required for execution, storage, hardware and software
platforms, personnel analysis and design ability, developer’s ability to deal with complex software,
personnel turnover, system analyst’s capability, level of programming language and software tool
experience, software tool application, site collocation and communication support in multisite
developments and development Schedule. The rates assigned to the cost drivers are scaled from
Very Low to Extra High. Five scale drivers namely; similarity of a product to previously developed
products, flexibility of design, design thoroughness and risk elimination, team connectedness and
organization’s process maturity. The mentioned drivers contribute to a project's duration and
determine the exponent used in the Effort Equation. The post architecture COCOMO II model is
defined as:

�� = �. ���	
�1.01 + ∑ ���. ∏ �����
���

�
���� (5)

Where B = 1.01+ 0.01×∑SFi and A = 2.45 (Chamkaur et al., 2019). Application of the COCOMO
II model in software requirements and maintenance is recommended in the study by(Ismaeel &
Jamil, 2007).

COCOMO II model recognizes different approaches such as prototyping, component composition
development and database programming. The main focus of COCOMO models was to address
the procedural programming paradigm according to (Periyasamy, K & Ghode, 2009) hence an
extension of these models would be necessary to accommodate other programming paradigms.
In addition according to Obot et al. (2022), COCOMO attributes contain some level of imprecision
and therefore there is a need to extend or review the model.

A recent study by Singh (2022) proposed an approach for software maintenance cost using the
Putnum model and particle swarm optimization algorithm. Linear Discrement Analysis (LDA) was
used for classification. The proposed approach was compared with the COCOMO and Putnum
models and use of the Putnum model was reported to contribute to better results.

A study byKyoung-ae-jang and Woo-je Kim(2021)presented a maintenance model for package
software. The model is based on maintenance activities identified by reviewing literature and cost
structure. Validation of the model was done using real data from maintenance projects and was
reported to produce promising results.

A maintenance cost estimation model is developed bySingh et al. (2019) based onthe Tomcat

server dataset and particle swarm technique for optimization. The inputs to the model are source

lines of code and maintenance effort. The model was said to present more accurate results.

A software maintenance effort prediction model was developed by Maheswaran and
Aloysius(2018) based on software cognitive complexity metrics. An empirical study was
conducted on the complexity metrics to ascertain whether they were predictors of software
maintenance effort.

The work by Islam and Katiyar(2014) proposed a maintenance cost estimation model which is
based on technical factors that include; maintenance Staff Ability, internal Complexity,
Documentation Quality, testing quality, system life span, code quality, application type, interface
complexity, CASE Tools and non-technical factors included understandability, probability, new
technology and organization maturity. The maintenance model also operates on fourth generation
language environment and applies the annual change of traffic metric.

Catherine Wambui Mukunga, John Gichuki Ndia & Geoffrey Wambugu Mariga

International Journal of Software Engineering (IJSE), Volume (10) : Issue (2) : 2022 26
ISSN: 2180-1320, https://www.cscjournals.org/journals/IJSE/description.php

A study by Kim et al. (2003) proposed a software maintenance project effort estimation model
(SMPEEM). Value adjustment factors are introduced and various attributes are discussed such
as knowledge of the application area, understanding of programming language and others.
Maintenance factors include; quality documentation, Conformance to software engineering
standards and testability.

2.2 Factors That Affect Software Maintenance Cost

Research by Chamkaur et al. (2019) identified software cost factors and categorized them under
technical and non technical factors. Technical factors listed included; complex Software, Human
capability, quality of documentation, Configuration management technology, Modern
Programming Specifications, size of the Database, Component Reusability and Component
Performance. Non-Technical Factors: Application Experience, Staff Stability, External
environment, Support environment and User needs. The researchers recommended the
implementation of the factors in reducing maintenance costs by the use of a cost estimation
model.

A study by Alija (2017) has highlighted team cohesiveness, contractual responsibility, staff
capability, program duration and composition, costs of understanding or program comprehension,
lacking or incomplete documentation and impact analysis as justification for increasing software
maintenance costs.

A study by Balra (2017) presented a list of factors affecting software maintainability such as
understandability, standards, modularization, and the language of a program, testing, complexity
and traceability.

Research by Benaroch (2013)sought to study the work and contribution by considering
application characteristics and personnel attributes as software maintenance cost drivers. The
factors include System characteristics namely; system age, size of the system and software
complexity. Personnel factors (independent) include; diversities of location and skills and the
maintenance personnel. System Dependent factors include maintenance effort and maintenance
cost. The research concluded that personnel attributes have a larger influence than system
factors.

Dehaghani and Hajrahimi (2013) carried out a study to identify factors that had a greater effect on
software maintenance costs. Interviews were conducted and factors were identified using Analytic
Hierarchy Process (AHP) and prioritized using expert choice (EC) software. The study mentioned
factors such as the reliability of software, the size of a system, the complexity of the system,
required time for execution, storage requirements, the experience of the programmer with a
programming language, quality of documentation and others.

In the work by Pragya and Varun (2012) cost estimation factors of component based software are
discussed. The factors are categorized as technical and non-technical. Factors listed under
technical factors include; component efficiency, application’s ease of use, the interaction of
system sub-elements, reusability of system’s units of composition, application’s connection, ease
of product use, ease of product maintenance, user training, computer-aided tools and interface
complexity. Non-technical factors include; expert experience, requirements stability, technology
advancements, system components and organization progressive improvement. The study by
Pragya and Varun(2012) presented a COCOMO based cost estimation model for maintaining
component based software. The model is based on software development cost, the amount of
source code changing within a year and high-tech and low-tech factors that have an effect on
component based software.

A study was conducted by Lee (2011) involving the identification of factors for estimating effort of
conducting corrective maintenance of object oriented programs. The factors were grouped into;
developer-related factors, environmental factors, defect factors and code factors. Developer
factors included familiarity with technology and software product and low system development
experience. Environmental factors included; tool unavailability, minimal team cohesiveness and

Catherine Wambui Mukunga, John Gichuki Ndia & Geoffrey Wambugu Mariga

International Journal of Software Engineering (IJSE), Volume (10) : Issue (2) : 2022 27
ISSN: 2180-1320, https://www.cscjournals.org/journals/IJSE/description.php

others. Defect factors included; unavailability of bugs documentation, minimal defect
reproduction, codebase’s ineffectiveness at the start of a maintenance project, Code related
factors included; high code complexity, low maintainability of code structure, high level of code/
system dependencies, high version/deployment complexity, high level of code volatility and low
availability of formal design documentation and code comments.

Software maintenance cost factors are discussed in Yong chang et al. (2011) and categorized as
technical and un technical attributes. Technical factors include; the complexity of software, human
capacity, quality of program documentation, configuration management technology, modern
programming specifications and database size. Untechnical factors included; experience with the
application, staff low turnover, time to develop the application and others. The factors were
assigned weight values and implemented in the calculation of maintenance cost using an
empirical method.

Based on the literature review, eighteen factors were identified as summarized in table one

 Factor Description References Number of
studies

1 Software Complexity Defines the complexity of

internal properties of a

software

[4][5][6][7] [8] [9] [10]

[11]

8

2 Document Quality Degree of correctness

and completeness of

system documents.

[4] [6] [7] [8] [11] 5

3 Configuration

Management

Technology

The technology used in

the maintenance of

computer systems.

[4] [11] 2

4 Modern Programming

Specifications

Involves using modern

tools and techniques for

program maintenance.

[4][7] [11] 3

5 Program Size Size is measured by

counting code lines in a

program, counting the

number of classes and

functions.

[4] [5] [7] [11] 4

6 Component

Reusability

The extent to which

various system

components can be

reused. Reuse will lower

maintenance costs.

[4] [9] 2

7 Component

Performance

The efficiency of various

components

incorporated in the

system.

[4] [9] 2

8 Maintenance Staff

stability

Describes the

permanency of the

maintenance

team.Frequent staff

turnovers could result in

more time to understand

the system.

[4] [6] [11] 3

9 Testing Quality The quality of tests on

the system. Low quality

tests will attract higher

maintenance costs.

[6] [10] [11] 3

10 System Lifespan Age of the system under

maintenance

[6] 1

Catherine Wambui Mukunga, John Gichuki Ndia & Geoffrey Wambugu Mariga

International Journal of Software Engineering (IJSE), Volume (10) : Issue (2) : 2022 28
ISSN: 2180-1320, https://www.cscjournals.org/journals/IJSE/description.php

11 Application Type An application that is

well understood will

result in minimal change

requests.

[5] [6] 2

12 CASE tools The use of various

Software Engineering

tools imply the cost of

maintaining software

[6] [8] [9] 3

13 Dependence on

External Environment

An application would

need modification if it is

dependent on the

external environment,

[4] [8] [11] 3

14 Hardware Stability The stability of a

hardware configuration

on which software will

operate on.

[7] 1

15 Programming Style Style of programming is

defined by guidelines

and rules to follow in

writing a computer

program.

[7] [11] 2

16 Understandability How easy it is to

comprehend

applications.

[6] [8] [10] 3

17 Technology Newness Refers to how new the

technology being

implemented is and the

frequency of

technological changes.

New technology might

require training or hiring

skilled personnel.

[6] [9] 2

18 Organization Maturity A Measure of an

organization's readiness

and capability to conduct

software maintenance.

[6] [9] 2

TABLE 1: Factors affecting software maintenance cost.

A total of eleven studies were reported to contain factors influencing software maintenance cost.
Software complexity and document quality were the most mentioned factors. System lifespan and
hardware stability were the least mentioned in one study each.

3. EXPERT OPINION SURVEY
Baker et al. (2014) defined expert elicitation as the extraction and quantification of personalized
opinions in research.

This section presents subsections explaining the design and validation of the survey instrument
and how the expert opinion survey was conducted. Survey results are also presented in three
sections namely; demographic survey of respondents’, responses on software maintenance cost
factors and ranking of the factors.

The expert opinion process followed the steps defined by Mosleh and Apostolakis (1987) namely;
the definition of the problem statement, the selection of experts using a set criteria, informing
experts of the objectives and expectations of the study and decision making. This research used
a survey research design, questionnaires were used for data collection and data analysis was
done using SPSS version 20. The research implemented a deductive approach. The experts

Catherine Wambui Mukunga, John Gichuki Ndia & Geoffrey Wambugu Mariga

International Journal of Software Engineering (IJSE), Volume (10) : Issue (2) : 2022 29
ISSN: 2180-1320, https://www.cscjournals.org/journals/IJSE/description.php

were selected using snowballing technique where a few experts were identified who later
identified fellow experts until there was an acceptable number of respondents. A requirement was
that an individual had to have worked for three or more years as a python developer or in python
project management to be classified as an expert. An online survey was carried out and
responses were analyzed using descriptive statistics.

3.1 Design and Validation of Survey Instrument

An expert opinion questionnaire was designed for this study and contained two sections. The first
section labelled A comprised of respondent’s personal information and second section labelled B
contained software maintenance cost factors. A Likert scale of five was used to rate the factors
namely; 1. Very low, 2. Low, 3. Slightly high 4. High and 5. Very high. The factors were divided
into two categories of technical and non-technical. Technical factors consisted of; software
complexity, document quality, configuration management, modern programming specifications,
program size, component reusability, component performance, maintenance staff stability, testing
quality, system lifespan, application type, CASE tools, dependence on the external environment,
hardware stability and programming style. Non-technical factors were; understandability,
technology newness and organization maturity. The responses of the pilot study were excluded
from the analysis of the final results. Content validity was performed on the questionnaire to
assess the extent to which measurement instrument items are relevant and representative of the
target construct. A total of eight experts were randomly selected to test the questionnaire items
on their degree of relevance and degree of clarity.

The experts were guided by the following scales:

Degree of item relevance to the measured domain
1- Not relevant
2- Somewhat relevant
3- Quite relevant
4- Highly relevant

Degree of item clarity
1- Unclear
2- Needs revision
3- Clear with minor revision
4- Very clear

Responses from the experts were tabulated and computed in MS Excel and yielded a score
content validity index of 0.988889 for the degree of relevance and 0.983333 for the degree of
clarity which according to Shi and Sun(2012) is within the acceptable value of 0.78 or higher.
Cronbach’s alpha was used to assess the internal consistency of the questionnaire. The measure
was applied because it can measure a survey consisting of multiple Likert-type scales and items.
A Cronbach’s Alpha value of 0.814 was recorded. According to Mohsen(2011), satisfactory
values of alpha are between 0.70 and 0.95 hence the instrument for data collection was
considered reliable. Cronbach’s alpha was applied because it is easier to use in comparison to
other estimates and only requires one test administration (Mohsen, 2011). Questionnaire
reliability statistics are presented in table two.

Reliability Statistics

Cronbach's Alpha
Cronbach's Alpha Based on
Standardized Items No. of Items

.814

.810 18

TABLE 2: Questionnaire Reliability Statistics.

Based on the above values, it was concluded that the questionnaire had achieved a satisfactory
level of content validity.

Catherine Wambui Mukunga, John Gichuki Ndia & Geoffrey Wambugu Mariga

International Journal of Software Engineering (IJSE), Volume (10) : Issue (2) : 2022 30
ISSN: 2180-1320, https://www.cscjournals.org/journals/IJSE/description.php

3.2 Conduct of Expert Opinion Survey

The goal of the survey was to evaluate the relevance of factors contributing to software
maintenance costs. Experts were identified by snowball technique and issued an online
questionnaire. Developers and project management staff with over three years in Python project
development and maintenance were selected. The sample size comprised of 52 python experts.
The Survey Planet platform was used to host the study questionnaire. Response time for the
survey was four weeks, the respondents were not contacted on the same day which explains the
overall long period of the online survey.

According to Naderifar et al. (2017) sampling is done until data saturation in snowball method.
Experts were familiarized with the goal of the elicitation process and the details of the issues
involved. The respondents were provided with the list of software maintenance cost factors that
were identified in the literature and were required to rank the factors based on the Likert scale. In
addition the experts were required to include other factors not in the list and influenced software
maintenance cost.

3.3 Survey Results

Feedback from the respondents was received and the data collected were analyzed using SPSS
software.

a) Demographic Summary of the Respondents
Characteristics of the respondents such as ooccupation, years of experience in cost modelling
and estimation, years of experience with Python software and level of education were considered.

i. Respondents Occupation
Analysis of respondents’ occupations was done and the findings indicated 28.6% of the
respondents were involved in software project management while 71.4 % were in software
development. These findings were acceptable because all the respondents had knowledge and
experience in python software development and software project management. The findings are
presented in figure 1.

FIGURE 1: Responses on Respondent’s occupation.

ii. Software Modeling and estimation experience of the Respondents
An analysis of the respondents’ experience in Software modelling and estimation was carried out.
Findings indicated that two respondents constituting 4.8% had less than two years experience
however they still qualified as experts since they had five and six years of python software
development. 73.8% of the respondents had three to five years experience, 16.7% had six to ten
years experience and 4.8% were highly experienced with over ten years in software modelling
and estimation. Findings are presented in figure 2.

28.6

71.4

Occupation

Projet management Software Development

Catherine Wambui Mukunga, John Gichuki Ndia & Geoffrey Wambugu Mariga

International Journal of Software Engineering (IJSE), Volume (10) : Issue (2) : 2022 31
ISSN: 2180-1320, https://www.cscjournals.org/journals/IJSE/description.php

FIGURE 2: Responses on Software Modelling and Estimation experience.

iii. Python Language Experience
Analysis of respondent’s responses on python language experience was conducted and the
findings indicated that none had less than three years experience. 61.9% had three to five years
experience, 31% was in the category of six to ten years experience and 9.5% had over ten years
experience with python applications. The findings were a clear indicator that the respondents
were qualified to participate in the study and would provide reliable information. Findings are
presented in figure 3.

FIGURE 3: Responses on Python Language Experience.

iv. Academic Qualifications
An analysis was conducted of respondents’ academic qualifications. The findings indicated that
4.8% of the respondents had a Diploma, 57.1% of the respondents had a Bachelor’s degree, 31%
had a Master’s degree and 7.1% had a Ph.D. degree. Two respondents with Diploma academic
qualifications had five years of experience in developing python applications and three years
experience in software modelling and estimation hence were considered as experts. Findings on
academic qualifications are presented in figure 4.

FIGURE 4: Responses on Academic Qualifications.

4.8

73.8

16.7
4.8

Software Modeling and Estimation
experience

0-2 years 3-5 years

6-10 years More than 10 years

0.0

61.9
31.0

9.5

Python Language Experince

0-2 years 3 - 5 years

6 -10 years More than 10 years

4.8

57.1

31.0

7.1

Academic Qualifications

Diploma Bachelor's degree

Master's degree PhD degree

Catherine Wambui Mukunga, John Gichuki Ndia & Geoffrey Wambugu Mariga

International Journal of Software Engineering (IJSE), Volume (10) : Issue (2) : 2022 32
ISSN: 2180-1320, https://www.cscjournals.org/journals/IJSE/description.php

b) Expert opinion Results on Software Maintenance Cost Factors
The respondents rated the factors based on how much they influence maintenance cost using a
scale of very low to very high. A rating of very low means the factor’s influence on the cost of
maintenance is very low and very high means the factor has a lot of influence on software
maintenance cost.

i. Ranked Software Maintenance Cost Factors
Each factor was ranked based on the mean value to identify the most relevant. The Sum of actual
responses was divided by the Sum of expected responses to get the mean using the formula
shown below;

�
�� =
��� ! "#$�"% &'() *('()'& "$$&�+�$'

��� ! ',)'#$'- &'() *('()'& "$$&�+�$'
× 100 (6)

The Sum of actual responses was derived by summing the respondents’ actual responses on all
the items in the questionnaire. The Sum of expected responses per attribute was derived by
summing expected responses from all the items in the questionnaire. Each item’s expected
response was five on the scale provided.

From the analysis, understandability, quality of documents, technology for configuration
management, programming standards, program size and complexity of software were highly
ranked with over 80% mean values. CASE tools, application type and system life span had the
lowest means of less than 60%.The results are presented in table 3.

Ranking

Factors affecting
maintenance cost

Sum of Actual
Responses

Sum of Expected
Responses

Mean in %

1

Understandability 180 210 85.71

2 Document Quality 174 210 82.8

3
Configuration Management

Technology
173 210 82.3

4
Modern Programming

Specifications
170 210 80.95

5 Program Size 170 210 80.95

6 Software Complexity 168 210 80

7 Testing Quality 167 210 79.52

8 Component Reusability 165 210 78.57

9 Organization Maturity 163 210 77.61

10 Maintenance Staff Ability 162 210 77.14

11 Technology Newness 155 210 73.80

12 Programming Style 146 210 69.52

13 Hardware Stability 142 210 67.61

14
Dependence on External

Environment
134 210 63.80

15 Component Performance 133 210 63.33

16 CASE Tools 124 210 59.04

17 Application Type 117 210 55.71

18 System Lifespan 116 210 55.23

TABLE 3: Ranked software maintenance cost factors.

Additional factors that influence the cost of maintaining Python programs mentioned by the
experts included; availability of maintainers, Staff ability and skills, code quality, number of
maintainers, hiring model of maintainers and location diversity of maintainers. A second
questionnaire was issued to the experts to get their feedback on how relevant the factors were in
the determination of software maintenance cost.

Catherine Wambui Mukunga, John Gichuki Ndia & Geoffrey Wambugu Mariga

International Journal of Software Engineering (IJSE), Volume (10) : Issue (2) : 2022 33
ISSN: 2180-1320, https://www.cscjournals.org/journals/IJSE/description.php

Each of the additional factors was ranked based on the mean value to identify the most relevant.
The Sum of actual responses was divided by the Sum of expected responses to get the mean.
The Ranked factors are presented in table 4.

From the analysis code quality was ranked highest with 85.8 % mean. Location diversity of
maintainers was the least relevant factor with a 67% mean.

Ranking
Factors affecting
maintenance cost

Sum of Actual
Responses

Sum of
Expected
Responses

Mean in %

1 Code quality 73 85 85.8

2 Staff ability and skills 68 85 80

3 Availability of maintainers 64 85 75.2

4 Number of maintainers 59 85 69.4

5 Hiring model of maintainers 58 85 68.2

6
Location diversity of

maintainers

57 85 67

TABLE 4: Ranked software maintenance cost factors.

4. DISCUSSION
A deductive research methodology was adopted with results obtained from this study comprising
a mix of secondary and primary data. Eighteen factors were identified from the literature review
namely; Understandability, quality of documents, technology for managing software
Configurations, Programming standards, Program size, the complexity of Software, Testing
quality, Component reusability, Organization maturity, Maintenance staff ability, Technology
newness, Programming style, Hardware stability, Dependence on the external environment,
Component performance, CASE tools, Application type and System lifespan.

An expert opinion survey was conducted to enhance and verify the findings from the literature
review. All the respondents had over three years experience in python language and hence were
considered as experts. Over 95% of the respondents had a minimum academic qualification of a
Bachelor’s degree. Such findings on the demographic characteristics of the respondents
indicated that they were fit for the study. From the expert’s opinion survey, all the factors were
reported to have some influence on the maintenance cost of Python programs. However, the
degree of relevance was differentiated by the ranking done based on the percentage mean per
factor. Understandability, document quality, configuration management technology, modern
programming specifications, program size and software complexity were top on the list with over
80% mean values in the first survey. CASE Tools, Application Type and System Lifespan were
the least significant with less than 60% mean.

In the second survey code quality and staff ability and skills were the most influential factors with
over 80% mean while location diversity of maintainers was the least significant.

Previously, the identification of software maintenance cost drivers has relied on literature review
as seen in Alija (2017) and frameworks as presented in the work by Benaroch (2013). Very few
authors have taken the time to conduct primary studies to verify the factors. This work has made
a contribution by verifying the factors through an expert opinion survey and in addition, ranking
the factors. Ranking will provide the beneficiaries of this work with prioritized factors during
software maintenance cost estimation.

5. CONCLUSION AND FUTURE WORK
This research aimed to identify and present a set of maintenance cost drivers for python
programs and show the order of relevance. This was done through an expert opinion survey to
determine relevant factors for estimating the maintenance cost of python programs. A total of
twenty four factors were reported and ranked in order of relevance. Adoption of the mentioned
factors by project managers can greatly impact decision making and success in the estimation of

Catherine Wambui Mukunga, John Gichuki Ndia & Geoffrey Wambugu Mariga

International Journal of Software Engineering (IJSE), Volume (10) : Issue (2) : 2022 34
ISSN: 2180-1320, https://www.cscjournals.org/journals/IJSE/description.php

software maintenance costs. This work has also a great benefit to software developers since it
presents information for developers to understand which factors affect maintenance cost and their
ranking in terms of relevance. A metrics-based neural-fuzzy cost estimation model will be
developed in the near future and the updated factors will be considered as input parameters.
Incorporating updated cost drivers will potentially result in a more accurate estimation model for
python programs.

6. REFERENCES
Aakriti, & Shreta. (2015). Software Maintenance challenges and issues. International journal of
computer science engineering, 4 (1), 23-25.

Alija. (2017). Justification of software maintenance costs. International Journal of Advanced
Research in Computer Science and Software Engineering, 7 (3), 15-23.

Balraj, K. (2017). A Survey of Key Factors Affecting Software Maintainability. International Journal
for Research in Applied Science & Engineering Technology, 5 (6), 1631-1637.

Benaroch. (2013). Understanding Factors Contributing to the Escalation of Software Maintenance
Costs . Thirty Fourth International Conference on Information Systems. Milan.

Boehm. (1983). Software Engineering Economics. ACM, 8 (3), 44 - 60.

Boehm, Abts , & Chulani. (2000). Software development cost estimation approaches - a survey.
Annals of Software Engineering, 10, 177 - 205.

Boehm, Abts, Brown , & Chulani. (2009). Software cost estimation with COCOMO II. Prentice Hall
Press.

Boehm, Abts, C., Brown, A. W., Chulani, S., Clark, B. K., Horowitz, E., & Steece, B. (2009).
SSoftware cost estimation with COCOMO II. Prentice Hall Press.

Brereton, Kitchenham, Budgen, & Turne. (2007). Lessons from applying the systematic literature
review process within the software engineering domain. Journal of systems and software, 80 (4),
571 - 583.

Bryant, & Kirkham. (1983). B .W.BOEHM SOFTWARE ENGINEERING ECONOMIC S A
REVIEW ESSA Y. ACM , 8 (3), 44.

Chamkaur, Neeraj, & Narender. (2019). Analysis of software maintenance cost affecting factors
and cost models. International journal of scientific and technology research, 8 (9), 276-281.

Chen, Chen, Ma, & Xu. (2016). Detecting code smells in python programs. International
conference on software analysis testing and evolution. Nanjing,China.

CMRP. (2014). Maintenance engineering handbook. McGraw-Hill Education.

Dehaghani, S. M., & Hajrahimi, N. (2013). Which factors affect software projects maintenance
cost more? Acta Informatica Medica, 21 (1), 63-66.

Dev. (2020). Design and development with Python programming. Journal of Engineering &
Technology, 26-30.

github. (2022). Retrieved from Github.com: Github.com

index. (2022, November 12). Retrieved from tiobe.com: https://www.tiobe.com/tiobe-index/

Islam, & Katiyar. (2014). Development of a software maintenance cost estimation model: 4th GL
perspective. International Journal of Technical Research and Applications , 2 (6), 65-68.

Catherine Wambui Mukunga, John Gichuki Ndia & Geoffrey Wambugu Mariga

International Journal of Software Engineering (IJSE), Volume (10) : Issue (2) : 2022 35
ISSN: 2180-1320, https://www.cscjournals.org/journals/IJSE/description.php

Ismaeel, & Jamil. (2007). Software engineering cost estimation using COCOMO II model. Al-
Mansour J, 10, 86-111.

Keim, Bhardwaj, saroop, & Tandon. (2014). Software Cost Estimation Models and Techniques: A
Survey. International Journal of Engineering Research & Technology (IJERT), 3 (2), 1763 - 1768.

Kim, H., Kim, S., Suh, J., & Ahn, Y. (2003). The software maintenance project effort estimation
model based on function points. JOURNAL OF SOFTWARE MAINTENANCE AND EVOLUTION:
RESEARCH AND PRACTICE, 15 (2), 71-85.

Kitchenham, & Taylor. (1987). Software Cost Models. ICL Technical Journal, 4 (1), 73-101.

Kukreja, & Garg. (2017). Effort estimation of object orinted system usig Stochastic tree boosting
technique. International journal of advanced research in computer science, 91-96.

Kyoung-ae-jang, & Woo-je Kim. (2021). A method of activity-based software maintenance cost
estimation for package software. The Journal of Supercomputing , 8151 - 8171.

Lakens. (2022). Sample Size Justifcation. Collabra: Psychology, 8 (1), 1-32.

Lakens, D. (2021). Sample size justification. psyarxiv.

Lee, M. J. (2011). Identifying effort estimation factors for corrective maintenance in object-
oriented systems. Las Vegas: digitalscholarship.unlv.edu.

Leung, & Fan. (2002). Software cost estimation. In Handbook of Software Engineering and
Knowledge Engineering.

Maheswaran, & Aloysius. (2018). Empirical Validation Of Object Oriented Cognitive Complexity
Metrics Using Maintenance Effort Prediction. International Journal of Scientific Research in
Computer Science Applications and Management Studies.

Mohsen. (2011). Making sense of Cronbach's alpha. International Journal of Medical Education, 2
(1), 53-55.

Mosleh, & Apostolakis. (1987). The elicitation and use of expert opinion in risk assessment: a
critical review. Probabilistic safety assessment and risk management, 1 (PSA 87).

Naderifar, Goli, & Ghaljaie. (2017). Snowball sampling: A purposeful method of sampling in
qualitative research. Strides in Development of Medical Education, 14 (3), 1-4.

Periyasamy, K, K., & Ghode, A. (2009). Cost estimation using extended use case point (e-UCP)
model. International Conference on Computational Intelligence and Software Engineering.

Pragya, S., & Varun, K. (2012). A Cost Estimation of Maintenance Phase for Component Based
Software. Journal of Computer Engineering, 1 (3), 1-8.

Saabith, Fareez, & Vinothraj. (2019). Python current trennd applications - an overview.
International Journal of Advance Engineering and Research Development, 6-12.

Saljoughinejad, & Khatibi. (2018). A New Optimized Hybrid Model Based on COCOMO to
Increase the Accuracy of Software Cost Estimation. Journal of Advances in Computer
Engineering and Technology, 4 (1), 27-40.

Sangeetha, Latha, & Prasad. (2012). software Cost Models. International Journal of Engineering
Research & Technology (IJERT), 1-10.

Catherine Wambui Mukunga, John Gichuki Ndia & Geoffrey Wambugu Mariga

International Journal of Software Engineering (IJSE), Volume (10) : Issue (2) : 2022 36
ISSN: 2180-1320, https://www.cscjournals.org/journals/IJSE/description.php

Shi, J. M., & Sun, Z. (2012). Content validity index in scale development. Journal of Central South
University. Medical sciences, 152-155.

Shi, J. M., & Sun, Z. (2012). Content validity index in scale development. Journal of Central South
University. Medical sciences, 37 (2), 152-155.

Singh, Kamini, Juneja, Joshi, & Garg. (2022). Performance comparison of Putnam model using
new technology trends for software maintenance cost estimation. Journal of Discrete
Mathematical Sciences and Cryptography , 691-703.

Singh, Sharma, & Kumar. (2019). An Efficient Approach for Software Maintenance Effort
Estimation Using Particle Swarm Optimization Technique. International Journal of Recent
Technology and Engineering (IJRTE), 1-6.

Singh, Sharma, & Kumar. (2019). Analysis Of Software Maintenance Cost Affecting factorsand
estimation models. International journal of scientific & technology, 276-281.

Yongchang , R., Tao , X., Xiaoji , C., & Xuguang , C. (2011). Research on Software Maintenance
Cost of Influence Factor Analysis and Estimation Method. IEEE.

