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ABSTRACT 

Increased security challenges and advancements in technology have led to heavy usage 

of surveillance cameras. This has resulted in an overwhelming abundance of video data 

which requires automated analytics for better utilization. The big volume of the video data 

generated by surveillance devices presents an enormous problem to the security personnel 

since they must monitor the footage frame by frame to identify the abnormal activities 

(security threats) like violence, and thuggery, among others. Successful identification of 

anomalies in surveillance footage will ease the work of Closed-Circuit Television 

(CCTV) operators greatly since they can search through a big volume of the video data 

easily. Another importance of this research is the contribution to computer vision since 

the model can be applied in other areas like robotic surveillance or unmanned 

surveillance. There have been attempts to automate the surveillance process using smart 

surveillance. However, these solutions are challenged due to high error rates and 

inefficiency while identifying abnormal scenes. Modern automated video analytics, use 

deep learning algorithms like; Convolutional Neural Networks (CNN), Long-Short Term 

Memory (LSTM), convolutional LSTM and 3DCNN. These approaches have their 

strengths and weaknesses, and it becomes a research challenge to determine the best 

model to use in detecting anomalies. Another challenge presented herein is the accuracy 

of detecting anomalies in surveillance videos. A comparative study was carried out to 

cross-examine deep learning models used in anomaly detection. Empirical data was 

collected to measure the accuracy of the deep learning models in anomaly detection. The 

best model was determined by analyzing the accuracies of the model published since 

2016. Experiments were set up in Google Collab and Google Cloud. These environments 

were configured to use Python 3.7, Keras and TensorFlow machine learning frameworks. 

The study improved the selected deep learning model through, optimization of the model 

structure and depth tuning. The study found that deeper autoencoders have high prediction 

accuracy and deeper spatial autoencoders draws more features from the videos and that 

increases their accuracy. Validation of the enhanced model was done through further 

experiments that compared the prediction accuracy acquired from the enhanced model 

against the existing model set as the control group. Their Receiver Operating 

Characteristic Curve (ROC) scores from UCSD Ped1 and Ped2 datasets were compared.  

Comparative analysis of the recorded model accuracies was tabulated and a percentage 

increase in the model accuracy was noted. A sign test was used to test the significance of 

the improvement and at both 1% and 5% significance levels, empirical evidence of the 

enhancement was found. This work contributed to the autoencoder design paradigms, 

improvement of Spatial-Temporal Autoencoder accuracy through depth and 

regularization tuning and reduction of anomaly detection errors in surveillance videos. 

The study has shown that the depth of spatial-temporal autoencoder impacts its anomaly 

prediction accuracy. In future work, integration of continual learning and real-time 

anomaly detection should be considered.  
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CHAPTER ONE 

INTRODUCTION 

1.1 Background to the Study 

Video surveillance has evolved hand in hand with photographic cameras. Rapid 

improvements in networks, storage and processing have made it possible to capture digital 

video data which can be processed in real-time [1]. Recently, video surveillance has 

increased rapidly to enhance security. Technology growth has made video surveillance 

evolve from analogue cameras to High Definition (HD) digital cameras which are 

accessible over the internet through Network Video Recorders [2]. The growth of video 

surveillance has given rise to the integration of security surveillance systems to address 

the complex operational and security needs of organizations. 

Video surveillance systems have become a critical part of the security and protection 

system of modern cities, homes, and institutions. The video surveillance serves as a distant 

monitoring tool for management and security forces. It is an important subsystem required 

to complete a security plan. To achieve the goals of surveillance, closed-circuit television 

cameras (CCTVs) have been deployed massively which gives rise to a large amount of 

video data [3]. 

 China and India have been noted to have the largest dense number of CCTV camera 

systems per square kilometer [4]. A metropolis called Chennai in India has the highest 

number of CCTVs Installations per square kilometer, it has about 657 surveillance 

systems deployed per square kilometer, which makes it the number one city in the world 
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in terms of security installations [4]. The projected trend of video surveillance is that data 

will continue to grow since more cameras will continue to be deployed. Hence, the 

introduction of cloud storage for surveillance data and online surveillance cameras like 

Wi-Fi cameras [4]. 

Notable improvements in security surveillance include night vision. The night vision 

feature allows cameras to monitor in low-lit and pitch-dark areas without loss of image 

quality. Both video and image data collected are clear for analysis and monitoring [1]. 

The act of surveillance involves observation of sceneries with intention of identifying 

specific behaviors, which are inappropriate, or in some manner indicate the possibility of 

the emergence of improper behavior or activity. Traditionally, the effectiveness of video 

surveillance required human intervention. People need to be on the lookout, in the control 

room throughout to detect abnormal activities (security threats) [2]. 

Video surveillance can be applied to security systems and investigations when there is 

proper monitoring. Proper monitoring involves having human monitors in real-time 

keenly reviewing the surveillance footage to identify malicious or criminal activities. This 

task requires an elevated level of commitment since anomalies are rare and can happen 

within a few seconds. The increase in surveillance video data requires more human 

monitors to effectively monitor. The human resource comes with additional associated 

costs [3]. 

High-Definition Video requires large storage to capture the surveillance footage over a 

certain period. This introduces the problem of storage since, large sets of data(videos) are 
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generated every millisecond of the surveillance, this increases the cost of storage. Hence, 

the cost of storage is among the determinants of the duration in which, the videos are 

stored [1]. The excessive cost of storage can be associated with the storage of unnecessary 

footage. Researchers have made numerous attempts to achieve intelligent surveillance. 

For instance, storage optimization, where the video management system stores the video 

when any motion subject is sensed [5].  

The growth of computing technology has given rise to advanced computing concepts like 

artificial intelligence which provides complex cognitive processing paradigms like 

machine learning and deep learning. These technologies have given birth to intelligent 

surveillance [4].  

Early attempts of intelligence surveillance include the integration of contactless solutions 

to video surveillance like facial recognition, vehicle plate recognition, and thermal camera 

body temperature screening to perform specific tasks using Internet of Things (IoT) 

gadgets. Blending video surveillance with artificial intelligence enables the surveillance 

systems to perform intelligent tasks like recognition of humans, vehicles, objects, and 

events. The deep learning algorithms make comparisons with a reference object in 

different postures, angles, positions, and movements [5]. 

The intelligent surveillance problem has spiked a lot of interest in computer vision 

algorithms with researchers aiming to have smart models which can monitor the scenes 

automatically. The act of identifying improper behaviors in surveillance videos can be 

referred to as anomaly detection. For instance, some of the most popular anomalies 

include violence, abuse, theft, traffic accidents, explosions, fighting, abuse, shooting, 
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weapons, stealing, vandalism, and shoplifting. Hence, the need to involve artificial 

intelligence in this field [3]. 

Artificial intelligence borrows the intelligence behavior of humans and uses computer 

systems to solve real-world problems like humans. Machine learning is a branch of 

Artificial Intelligence (AI), that uses past experiences(data) to solve a given problem [6]. 

The machine learning algorithms analyses the historical data and uses that knowledge to 

predict the future. An Artificial Neural Network (ANN) is an example of a machine 

learning algorithm that borrows heavily from the human brain. The ANN uses parallel 

networks with non-linear neurons that learn by adjusting the strengths of their 

connections. To address more complex cognitive intensive problems many layers of 

neural networks are stuck together. The stacking of many layers to solve complex 

problems that require complicated internal representations led to a variant of machine 

learning called deep learning.  

The utilization of deep learning in video processing has shown promising results in areas 

like automatic recognition of temporal and spatial events in videos. Deep Learning has 

made it possible to train video analysis systems that mimic human behavior. In addition, 

these systems can identify specific objects in an image and track their path. Therefore, the 

presence of such technology forms a fundamental part of our abnormal scene detection 

research [5].  

Deep learning can be considered as a subset of machine learning whose algorithms are 

inspired by the structure and functioning of the neural networks in the human brain. As 

the name ‘deep’ implies deep learning is all about the scale where larger synthetic neural 
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networks are trained with a huge amount of data, while their performance and accuracy 

continue to increase. This is notably different from other machine learning techniques that 

reach a plateau in their performance [6]. 

Deep Learning algorithms have achieved exceptional performance in areas like image 

recognition. For instance, AlexNet, Imagenet Large-Scale Visual Recognition Challenge 

(ILSVRC-2012). Such achievements have provided the foundation knowledge for video 

analytics research since a video can be broken down into frames then the frames can be 

analyzed and processed like images [7]. Convolutional neural networks (CNN) have been 

used in image processing since it works well for pattern recognition. 

Another popular deep learning algorithm is Recurrent neural networks (RNN). This 

algorithm is quite useful while modelling time-series data. Since video data is spatial-

temporal, RNNs preserve weights from sequential data. This network has made video 

analytics possible [8]. 

However, recurrent neural networks (RNNs) are not immune to problems faced by 

artificial neural networks such as vanishing/exploding gradient problems which limits 

their performance. This led to the development of its variation called Long Short-Term 

Memory (LSTM), which was developed by two Germany Scholars namely, Sepp 

Hochreiter and Juergen Schmidhuber [9].  LSTM can preserve, the estimation error that 

can be backpropagated through time and layers. This allows recurrent nets to learn over 

many steps (over 1000) thereby opening a channel to link causes and effects remotely. 



6 

 

LSTM networks work well in the processing of sequential data but are limited to one-

dimensional data. This makes it hard for LSTM in its initial form to process video data 

that is three dimensional. The memory cell of LSTM was replaced by a convolutional 

layer to allow it to process spatial-temporal data hence the introduction of the ConvLSTM 

algorithm which is widely used for video processing [10]. 

Deep learning algorithms are stacked together or joined in layers and then compiled to 

work as a unit in a model. The models are designed using different learning architectures 

and depending on the job they should do. Deep learning models are based on artificial 

neural network variants and their design architectures are classified into supervised and 

unsupervised learning The nature of the problem dictates the model design [11]. 

Most importantly, a model designed to pinpoint and alert anomalies in surveillance videos 

can solve the storage problem since only the abnormal behavior footage will be stored 

and less human power will be needed for a surveillance operation. 

1.2 Problem Statement 

Many deep learning algorithms have been implemented to detect anomalies in 

surveillance videos [15]. Examples of the algorithms used include Convolution Neural 

Networks [16], 3D Convolutional Neural Networks [17], Long- Short Term Memory 

Autoencoder [18] and Conv-LSTM [19]. Chalapathy & Chwala [20] finds that 37.8% of 

the deep learning anomaly detection solutions are made of Auto-Encoders (AE), while 

29% are made of CNN constructs, both LSTM and RNN had 4% each. These findings 
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however do not find what model is the best for use while constructing a deep learning 

solution for anomaly detection. 

The challenge is determining the best algorithm among the anomaly detection models in 

surveillance videos. Little research has been conducted in the evaluation of deep learning 

models that are used for the detection of anomalies [21]. 

The second challenge is the high error rate in anomaly detection models. There are errors 

present in the detection of anomalies. Both false positive and false negative alarms are 

present in these models. The structure of the deep learning models affects their ability to 

identify anomalies well making them prone to errors while detecting anomalies. The 

quality of video representation and complexity scenes affects the performance of the 

model. 

This research, therefore, exists to contribute to two gaps namely the empirical 

determination of the best deep learning model for the detection of anomalies in 

surveillance video and the enhancement of the deep learning model to reduce the false 

alarm rate. 

1.3 Objectives of the study 

1.3.1 Main Objective 

The main objective of the study was to develop an enhanced deep learning model to detect 

anomalies in surveillance videos. 
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1.3.2 Specific Objectives 

To achieve the main objective, the study was guided by the following specific objectives: 

i. To investigate empirically, the selected deep learning models used to detect 

anomalies in surveillance videos with an aim of determining the best. 

ii. To develop deep learning model that would optimize detection of anomalies in 

surveillance videos. 

iii. To validate the developed enhanced deep learning model.  

1.4  Research Questions 

To fully achieve the stated objectives, the study will seek to answer the following research 

questions: 

i. Which deep learning models are used to detect anomalies in surveillance 

videos? 

ii. How can the selected deep learning model be improved to reduce high error 

rate? 

iii. How valid is the developed enhanced model for anomaly detection in 

surveillance videos? 

1.5  Justification  

Surveillance videos are an important part of our security systems, ranging from the 

domestic, corporate and national levels. Surveillance equipment generates a vast amount 
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of video data at a remarkably high velocity. The generated video data require a large 

amount of storage space so that in case of any incidents, the footage can be referenced.  

The overwhelming abundance of surveillance video data expresses the need for intelligent 

surveillance systems. Researchers have made numerous attempts to solve this problem. 

For instance, Chong and Tay [19], Sultani et al. [20], Bansod [21] and many others [22], 

[23] [17]. These solutions suffered from false alarm errors, and they need improvement.  

This research sought to improve an existing model by modifying its architecture. Through 

improvement the study reduced the error rate in the model. Reduction of the error rate 

goes a long way to achievement of intelligent surveillance. 

The study can ease the work of surveillance operators and be a significant contribution to 

the field of computer vision. With the application of the research to optimize the storage 

footage, if only the abnormal scenes are stored then a large amount of storage space can 

be saved. 

1.6  Scope of the Study 

The study focused on improvement of the deep anomaly detection model. Anomalies were 

taken as activities that deviated from the others. Anomalies included strange activities like 

having bikes and motor vehicles which are prohibited in a park. Other real-world threats 

to public safety such as Abuse, assault, traffic accidents, burglary, explosion, fighting, 

robbery, shooting, weapons, stealing, shoplifting and vandalism were also considered 

anomalies. 
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The study evaluated selected deep learning models used in anomaly detection and one 

was selected for improvement. The selected model architecture was improved by addition 

of more layers and optimization of the regularization functions. The enhancement process 

was focused on improvement of the model structure through depth optimization. The 

validation scope included comparison of the old model to the new enhanced model 

accuracy. The accuracy was validated further through test of significance.  

The study was confined within Deep learning technology that is a subset of Machine 

Learning. Within deep learning the study focused on self-supervised models. 

Autoencoder model was the selected model for improvement. Internal structure of the 

autoencoder was optimized to increase the model accuracy. 

1.7  Significance of the study 

The importance of physical security in the real world cannot be underestimated. Video 

surveillance has become a key component of any comprehensive security system. 

Traditionally security surveillance provided video footage whether live or recorded. The 

advancement of technology has introduced the concept of smart surveillance that intends 

to provide knowledgeable insights from the video. 

This study contributes to smart surveillance by providing means to improve the anomaly 

detection models. The study focused on improving a deep learning model that detects 

unusual activities by modifying the structure of the deep learning model to allow the 

extraction of more features. 
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Therefore, the greatest beneficiaries of the study will be the security personnel since the 

successful identification of anomalies will ease their work. Other contributions expected 

from this study are to the field of computer vision where unmanned surveillance can 

borrow heavily from anomaly detection. 

Such contribution will improve the quality and efficiency of smart surveillance. Hence, 

the improvement of the security by making it even easier for enforcers to identify 

incidents in time and even deter crime. 

1.8  Limitations of the study 

The study focused on model improvement only. A model was chosen, and its architecture 

was altered to improve its anomaly prediction accuracy. The study was limited to depth 

tuning and model regularization enhancements. The study did not focus on the real-time 

anomaly detection for live surveillance videos. The study did not focus on optimizing the 

data structure to reduce its dimensions. The improvements were done to the model 

structure and that’s what the study focused on. 

1.9 Contributions of the Thesis 

The research work made several contributions to the field of deep learning and smart 

surveillance by enhancement of intelligent surveillance. These contributions are as 

follows: 

Improvement of anomaly detection accuracy by modification of the autoencoder model 

structure. Depth tuning of the autoencoder increased the model capacity to draw features 
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from complex surveillance scenes that in turn increased the model accuracy to optimize 

anomalies. The depth of the model was increased from 15 layers to 29 layers.  Trainable 

parameters increased from 1,958,209 to 3,710,157 parameters.  

Autoencoder model refinement and rapid improvement of the architecture of spatial-

temporal autoencoders is another important theoretical knowledge contributed by this 

research. 

Another contribution is in the autoencoder models troubleshooting, debugging and 

incremental design paradigm. This work takes an incremental stepwise deep learning 

model troubleshooting approach to continuously refine the model and select the best 

hyperparameters. The debugging knowledge can be applied in the designing and 

refinement of autoencoders. 

1.10 Organization of the Thesis  

This thesis is organized into five chapters. The first chapter contains the introduction to 

the thesis by highlighting the background information and the technology that has led to 

the growth and development of this field. The initial chapter also describes the problem 

found in the field, and how the researcher planned to address it, through the formulation 

of objectives and research questions, this chapter goes further to establish the 

delimitations of the study and it adjourns by providing a list of the contributions the study 

made to its field.  

Chapter two describes relevant literature to the field of smart surveillance and the topic at 

hand. Chapter three details how the study was conducted through experimentation and 
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systematic review methodologies. Chapter four introduces the results and their 

interpretations and finally, the last chapter summarizes the study, gives recommendations, 

and gives suggestions for future works.  
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CHAPTER TWO 

LITERATURE REVIEW 

2.1  Introduction 

This chapter will explore other related work to the study. It will start by investigating 

available literature on popular deep learning models used in the detection of anomalies in 

surveillance videos. The available literature on deep learning model enhancement shall 

be explored as well. Most importantly, the datasets in this area will be considered, as well 

as model improvement and validation methods. 

2.2 Overview of Anomaly Detection Deep Learning Models 

This section describes the technology behind the deep learning technology and the terms 

encountered in anomaly detection. The section expounds on the theoretical framework 

from which the research originated.  

2.2.1 Understanding Deep Anomaly Detection 

It is paramount to describe the meaning of anomaly detection in video surveillance since 

it was the main subject of this study. [22] describes anomaly detection as a prominent 

level of video understanding which sieves out the abnormal events from the normal 

sequence of events [22]. 
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The study is inclined to deep learning models that are used to detect anomalies. Therefore, 

it is important to understand deep learning as a subdivision of machine learning and 

artificial intelligence. 

Ian Goodfellow gently defines deep learning as, “a form of machine learning that enables 

computers to learn from experience and understand the world in terms of a hierarchy of 

concepts. The hierarchy of concepts allows the system to learn sophisticated concepts by 

constructing them out of simple representations” [23]. 

Deep Learning is a subcategory of machine learning which is encouraged by the design 

and working of artificial neural networks (ANN) [12]. Deep Learning is sometimes 

referred to as Deep Neural Networks (due to the depth of the neural networks used) and 

is capable of learning features from structured and unstructured without supervision [8]. 

The inspiration for Neural networks is the way the human brain filters information. In a 

way, these neural networks mimic the human brain. The said networks are capable of 

learning unsupervised from both structured and unstructured data. [12] For Instance, in 

our brains, a neuron is composed of a body, axon and dendrites. The signal(dendrites) is 

transferred from one neuron to the other through the axon [8].  

Therefore, the idea behind deep learning algorithms is that inputs are fed to the input layer 

whose output is fed as input to the next layer and so on for several hidden layers until the 

final output is achieved. As the name ‘deep’ implies larger neural networks with many 

hidden layers are trained with a huge amount of data, while their performance and 

accuracy continue to increase. However, this is notably different from other machine 

learning techniques that reach a plateau in performance [8]. 
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Deep learning utilizes several layers of non-linear processing elements for transformation 

and feature extraction. The learning process creates a hierarchy of ideas where each level 

acquires a more abstract and composite representation from input vectors [13]. Processing 

at deep network nodes takes in the numerical data form, considering that each node has a 

number that aids in determining its activation value. The activation value is calculated 

from the connection weights and transfer functions and then it is passed to the next node. 

These weights are how ANN decides where to pass the signals. Activation runs 

throughout the network nodes until the output node is reached. Finally, the output node 

transforms the information in a way we can understand [13]. 

The model performance can be calculated from the cost function since it associates the 

estimated output and the actual output. To minimize the cost function, weight adjustment 

is done which is referred to as backpropagation. Forward propagation alternatively, uses 

information entered in input layers and moves forward through the different nodes to 

produce output. Weight values are calculated and circulated backwards to update 

weighted nodes and finally, the network is trained [24]. A feedforward network is 

composed of input, hidden and output layers where the signal can only move in a single 

direction (forward). These kinds of networks are utilized in data mining. On the other 

hand, a feedback network allows signals to move in both directions. An example of such 

a network is the recurrent neural network (RNN) [11]. 

Inside the network node, we have an activation function. An activation function 

determines the output of a node. It can also be referred to as a transfer function since it 

translates the input vector to the output vector [24]. The function transforms the output 
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values in ranges of 0 to 1or -1 to 1. In simple terms, the activation function is the rate of 

action potential firing in the cell [25]. Common examples of activation functions include 

threshold activation function, sigmoid activation function, hyperbolic Tangent Function, 

and rectifier function [11]. The most popular models are selected using the criteria of the 

most used model and with the best outcomes from various published research like the 

review of deep learning models by Shrestha [8]. 

2.2.2 Selected Deep Learning Models in Video Anomaly Detection 

The most popular deep learning models used to detect anomalies in surveillance videos 

can be identified from the frequency of use by researchers. For instance, a survey by [20] 

on Deep Learning for Anomaly Detection, identifies the following models as the most 

popular; Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), 

Auto Encoders, and Convolutional Auto Encoders [20]. The table below shows the 

models used in different research. 

Deep 

Learning 

Model 

Used 

No. of 

Times 

Used 

Referred use cases 

CNN 11 Dongetal.[2016],Andrewsaetal.,Sabokrouetal.[2016a],Sabokro

uetal.[2017],Munawar et al. [2017],Li et al. [2017b],Qiao et al. 

[2017],Tripathi et al. [2018],Nogas et al. [2018],Christiansen et 

al. [2016],Li et al. [2017b], 
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AE-CNN-

LSTM 

3 Chong and Tay [2017], Qiao et al. [2017], Khaleghi and Moin 

[2018] 

AE 14 Qiao et al. [2017],Yang et al. [2015],Chen et al. [2015],Gutoski 

et al.,D’Avino et al. [2017],Dotti et al. [2017],Yang et al. 

[2015],Chen et al. [2015],Sabokrou et al. [2016b],Tran and 

Hogg [2017],Chen et al. [2015] ,D’Avino et al. [2017],Hasan et 

al. [2016],Yang et al. [2015],Cinelli [2017],Sultani et al. [2018] 

LSTM-AE 1 D’Avino et al. [2017] 

LSTM 4 MedelandSavakis[2016],Luoetal.[2017a],Ben-AriandShwartz-

Ziv[2018],Singh [2017] 

RNN 4 Luo et al. [2017b], Zhou and Zhang [2015] ,Hu et al. [2016], 

Chong and Tay [2015] 

Table 2.1: A table showing the usage of deep learning models used in video anomaly 

detection adapted from Chalpathy and Chwala. 

The concept of anomaly detection encompasses other areas like fraud detection, cyber 

intrusion detection and other areas. This study however will only focus on anomaly 

detection in surveillance videos. 

2.2.3 Convolutional Neural Networks – ConvNet 

Convolution can be defined as a category of linear operation that is used for feature 

extraction. Convolutional Neural Network is a deep learning algorithm whose architecture 

borrows heavily from the human visual cortex, where neurons are arranged in patterns 

that overlay to span over the entire pictorial/graphic area.  A ConvNet uses filters to 

acquire pattern dependencies in images. The architecture of ConvNet reduces the images 
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into small matrices that are easier to process but maintains the distinctive features that are 

important for acquiring a good prediction. A kernel is composed of a trivial array of 

numbers, which is used across the input array also known as a tensor. Element-wise 

multiplication between all parts of the kernel and the input array is computed at all parts 

of the tensor, then summed to obtain the output value. The output value is also known as 

the feature map. [25]. 

The building blocks of a CNN include the convolutional layer, Pooling Layer and Fully 

Connected Layer. The usual architecture of CNN consists of the replication of a stack of 

numerous convolutional layers and a pooling layer followed by a fully connected layer 

[26]. 

The convolution layer is the foundation block of CNN which performs the biggest portion 

of the CNN’s computational load. The pooling layer reduces the size of the representation, 

therefore, decreasing the amount of computation and number of weights required. The 

max-pooling reports the maximum output from the neighborhood. Pooling offers some 

transformation invariance, which makes an object to be detectable irrespective of its 

location on the frame. The fully connected layer (FC): The nodes in this layer are fully 

linked with all the nodes in the previous and the next layer, which is like a regular feed-

forward neural network. Hence, it can be calculated normally using matrix multiplication, 

followed by a bias effect. The FC layer is particularly useful in mapping the image from 

the input to the output [26]. 

This technology has been applied extensively in image processing and anomaly detection. 

For instance: a deep learning application known as AI Guardman uses pose estimation to 
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detect shoplifting. This application was developed by a tech startup called NTT East [27]. 

The application uses the OpenPose Technology from Carnegie Mellon University to 

estimate the pose of a person and suspicious behavior is derived from the pose. OpenPose 

was established by scientists at Carnegie Mellon University to approximate the posture of 

a person instantaneously. This model can identify a person’s facial points, body and hands 

from 3D and 2D images as well. Open Pose technology utilizes multitask learning, using 

a Convolutional Neural Network. [28]. 

With the integration of Openpose technology, AI Guardman can identify and trail an 

object's motion and behavior. This application is trained to identify suspicious behavior 

like nervous customers and then it alerts the store clerk's smartphone and sends a mugshot 

and location [27]. Some of the challenges faced and still present in the system are the high 

error rates.  The resultant application failed to distinguish shoplifters from indecisive 

shoppers or widow shoppers. On several occasions, the system had flagged, customers 

who pick up and put-back items, and salesclerks who restock shelves as potential 

shoplifters. 

Sabokrou et al. [29] developed a method of detecting and localizing anomalies in videos 

aimed at detecting an anomaly in crowded scenes [29].  This model used Fully 

convolutional Neural Networks (FCN) and sequential data. Their model utilized a 

supervised pre-trained FCN to ensure the detection of anomalies in the scene. FCN 

extracts distinctive features present in the video regions. Initial layers of the FCN 

borrowed from a pre-trained Alexnet Model-which is a CNN model developed to classify 
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images and trained using the ImageNet (MIT Places Dataset). The extracted features are 

discriminative enough to pinpoint anomalies in video surveillance data [29] 

The shortcoming of the model includes the error rate margin, where the model labels the 

motion of people going in different directions as abnormal behaviour [29]. 

 

2.2.4 3D Convolutional Neural Networks (3D- CNN) 

Convolutions are filters (matrix/vectors) composed of learnable parameters that extract 

low-dimensional features from input data. Instinctively, convolution is the step of using 

the idea of sliding window (a filter with learnable weights) across the input and producing 

a biased sum (of weights and input) as the output [30]. The weighted sum is the feature 

space that is used as the input for the next layers. 3D-CNN is a type of CNN that utilizes 

3D convolutions. 

3D Convolutions applies a 3-dimensional filter across the input as it moves in 3-directions 

(x,y,z) to compute the depiction of the low feature. The output matrix is a 3D volume 

space, like a cube or cuboid. The 3D convolutions apply to video analytics like event 

detection in videos [30]. 

Kushwaha et al developed another smart surveillance system to detect intruders [31] This 

system implemented convolutional neural networks to detect motion and alert the 

homeowners. Depending on the level of motion, the system flags intrusion and then 

notifies the homeowner. This system pulls data/ live surveillance from a pi camera, then 
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it is forwarded to CNN to detect motion. Their system used Raspberry PI to process the 

footage using the TensorFlow library of deep learning [31] 

CNN is used to detect motion, thereafter they flag intrusion and alert the homeowner. 

Although the use of deep learning improved the accuracy of the system. It is still 

vulnerable to false alarms which can be raised by non-threat intrusion [31]. Another 

challenge faced by the system is that motion detection is dependent on motion exceeding 

a certain limit, otherwise, the system cannot raise an alarm. With the rapid growth in 

complexity and increase of theft actions, their model could not effectively distinguish 

threats from non-threats.   

Sabokrou et al. [32] developed a dependable method to detect anomalies in crowded 

scenes [32]. This model was composed of cascading classifiers with two main stages: 

light-deep 3-D spatial autoencoder used to identify the initial cubic normal patches and 

remaining video data is evaluated by a more complex deeper 3D-CNN. This model 

achieves comparable performance to the other similar hi-tech models. Although this 

model is only limited to crowded scenes rendering it less effective in generalized video 

surveillance and flags people moving in different directions as an anomaly [32]. 

2.2.5 Recurrent Neural Networks – (RNN) 

RNNs are part of deep learning algorithms that are crafted to extract patterns in 

chronological(sequential) data. This type of network is appropriate for images that are 

broken down into a group of patches that are treated as a sequence. Within recurrent 

networks, decisions arrived at time step (t-1), affect the decision reached moments later 
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at time step t. The major shortcoming facing this kind of neural network is the vanishing 

gradient problem, which limits its performance. This led to the development of an RNN 

variation called, Long Short-Term Memory (LSTM) [10].  

2.2.6 Long Short-Term Memory (LSTM) 

Two German Scholars developed LSTM network namely: Sepp Hochreiter and Juergen 

Schmidhuber to solve the problem of exploding gradient. They introduced forget gates 

which preserve the backpropagated error through time and layers. This allows the LSTM 

network to learn the features over many cycles (over 1000), thereby LSTM opens a 

conduit to connect the causes and the effects remotely [9]. 

LSTM has gated memory cell where data is written and read from the cell, it is like how 

a computer’s main memory works. The cells with help of forget gates make decisions on 

weights to store and when access the reads, writes and erasures, through gates that close 

and open. The forget gates were implemented through selective multiplication via 

sigmoid functions which range from 0 to 1. Moreover, these gates acted on signals they 

received and just like the neural network’s nodes; they pass or block the signal depending 

on its strength and acquire features using their own set of weights [9]. 

The limitation of LSTM as to be applied in this thesis is that it only accepts 1-D data. For 

purposes of video analytics where a sequence of images exists, both feature extractor and 

sequence data modelling are needed.  Hence, need to explore another variation of RNN 

called Conv-LSTM, which combines the capabilities of Convolutional Networks and the 

Sequential data processing capability of LSTM networks [10]. 
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2.2.7 Conv-LSTM 

Contrary to the LSTM Cell state, convolutional LSTM internal matrix multiplications are 

exchanged with convolutions operations. Hence, the data that flows through the conv-

LSTM cell keeps the input dimension (3D in our case) instead of the 1D vector.  This 

algorithm considers both spatial features and temporal features from input data. This 

characteristic of the Conv-LSTM makes it more suited for video analytics. Among the 

ways of processing sequential images, the best approach is using Conv-LSTM layers [14]. 

Conv-LSTM varies from LSTM since the number of input dimensions in a Conv-LSTM 

is different from LSTM. As input data accepted by LSTM is one-dimensional, which 

makes LSTM not suitable for 3-D chronological data such as radar image data, satellite, 

and video sets. Conv-LSTM on the other hand is crafted for spatial (3-D) data input and 

processing [14]. 

2.2.8 Autoencoders 

Medel and Savakis [19], implemented a Convolutional Long-Short Term Memory 

Autoencoder Network (Conv-LSTM-AE) to predict the rate of change of video sequence 

from several input frames [19]. They applied that technique to measure regularity scores 

derived from the reconstruction errors of a set of predicted frames with abnormal video 

sequences. The abnormal video sequences yield low regularity scores since they diverge 

further from actual scores sequences over time [19]. 

The amalgamated Conv-LSTM-AE was composed of an encoder and a decoder which 

learnt the regularity of videos from the non-overlapping patches of the frames from an 
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input segment. The network was trained to predict accurately normal actions like those 

found in training videos. Hence, the prediction of abnormal videos diverges away from 

the ground truth with each time stamp. Reconstruction errors are measured using a 

regularity score which is used to determine when anomalies occur [19]. 

The architecture of the model is constituted of encoder and decoder parts. The encoding 

part accepts the input sequence and reshapes it to a stack of non-overlapping patches. The 

decoder part is composed of two decoders that is one reconstructs the past input video 

sequences and the other predicts the future frames. Both decoders are initialized with 

encoded input. The trained model with normal videos. Anomalies are identified by 

inspection of the reconstructed and predicted since anomalous events are more likely to 

stand out since the trained model was only trained with normal videos [19]. The challenge 

faced by this model is the rate of false-positive errors. 

2.3 Other technologies used in Anomaly detection 

This section highlights the use of motion sensors and behaviour tracking to detect 

anomalies. Other technologies that have been used to detect anomalies in surveillance 

videos are discussed in this section.  

2.3.1 Use of Motion Sensors  

Kushwaha's pioneer work on the anti-theft system used motion sensors and a video 

camera to point out cases of home intrusion [31] Their system used a video feed which 

was broken down to images, which were preprocessed through background estimation, 

background subtraction, outlier rejection, frame referencing and segmentation [31]. 
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Several frames were used to estimate the background, then subsequent frames were 

subtracted from the reference frame to detect anomalies in the objects. The nearest 

neighbor search was then carried out to match previous and current images to pinpoint 

anomalies. This system utilized a simple decision-making algorithm based on feature 

matching. The first captured image was stored as the reference image, then if the current 

image did not match the referenced image, the system generated an alert message, where 

the user must determine the credibility of the alert if it is true or false and whether to take 

any action.  This system is limited to one camera only and the motion generated from 

other objects other than intruders are picked as alerts. To address the shortcomings of this 

paper Kushwaha developed another antitheft system that uses Convolutional Neural 

Networks to detect motion [31]. 

2.3.2 Behavior Tracking based anomaly detection 

 [33] is a classic case of behavior analysis. Farooq et al. [33] implemented a system that 

utilizes unsupervised learning to detect anomalies in street traffic.  This system puts 

together various algorithms and models. Gaussian Mixture Model (GMM) was utilized 

for the identification and tracking of objects. GMM was used to subtract background 

scenes and identification of foreground objects. In addition, Kalman Filter is applied to 

indicate each track. Features extracted from the live feed, include the position of the 

object, orientation, trajectory, visible age in the scene and invisible account [33]. 

The model also utilizes the Euclidean distance to analyze the trajectory and calculate the 

speed of the vehicles [33] From the trajectory’s dataset, clusters are calculated. Thereafter 

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm is 
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used to cluster events based on features like age and angle. For instance, anomalous 

activity like a sharp turn is identified when the object turning angle is greater than 56 

degrees. Some of the contributions form the foundation for object tracking and detection 

of behavioral analysis. One of the challenges faced is that traffic is more complicated. 

Other than trajectories, enforcement of other traffic rules and continuous tracking of 

vehicle behavior is not addressed [19]. 

2.4 Model Development Strategies 

This section explores the literature related to model development and enhancement. 

Different model design techniques are influenced by the nature of the problem. The art of 

combining different algorithms to work as a single unit is widely explored. 

To understand the strategies used in the model development process, it is critical to 

understand what constitutes a model and the relationship between algorithms, models and 

the training data. A deep learning model can be described as the outcome of training a 

deep learning algorithm with the training data. The model is the product of the training 

process [34]. 

On the other hand, deep learning algorithms are the general approaches to problem-

solving that borrows heavily from artificial neural networks for instance: CNN, LSTM 

and ConvLSTM. The algorithms can be combined and implemented to have different 

models. The model becomes the mathematical representation of the solution using a 

specific pattern that can be applied to solve real-world problems. Many models can be 

created from the same algorithm using different sets of training data [34]. 
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2.4.1 Model Development Process 

The development of deep learning models involves a myriad of activities which can be 

summed up into several steps. The deep learning model development process is somehow 

like the software development process. The development process involves; the initiation 

of the deep learning project, preparation of the datasets, design of the model, visualization 

of the model and metrics, debugging of the model and finally the improvement of the 

model [34]. 

Initiation of a deep learning project involves understanding the problem at hand and 

defining the expected solution. At this stage, researchers define a plan on how to achieve 

the project objectives by defining the acceptable solution, ethical reservations, the 

acceptable precision/accuracy score, and the nature of the problem i.e., classification, 

regression, and clustering among others. The platforms and deep learning frameworks are 

selected and optimized according to the project requirement and budget constraints. For 

instance, for deep learning, a platform with a graphics processing unit (GPU) is required. 

Cloud infrastructure provides scalable computing resources that are extremely useful in 

deep learning projects. For instance, Amazon or Google Cloud [34]. 

The data preparation phase includes the creation of the training and testing data needed to 

craft the model. After the problem is understood, the next step is to find the data that will 

be used. The quality and the quantity of data are important in deep learning. The 

preparation process involves identification of the data, cleaning of the data, preprocessing 

and data transformation to the required shape. Data can be collected from public datasets 

that have created specialized data for use in our problem domain. For instance, the 
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University of California San Diego (UCSD) has shared a video anomaly dataset called 

Pedestrian 1 (Ped1) and Pedestrians 2 (Ped2) [35]. Other popular datasets include the 

Shanghai Tech Video Anomaly dataset and the Avenue video anomaly dataset. 

The design of the deep learning model begins with the identification and selection of the 

software framework or platform to be used. The deep learning frameworks include 

TensorFlow, Keras, Caffe, PyTorch, Caffe2, Apache MXNet and Microsoft Cognitive 

Framework (CNTK) [34]. The most popular frameworks include TensorFlow and 

PyTorch. The popularity of PyTorch can be credited to its user-centered design and user-

friendliness features. Its internal organization makes pre-trained models and popular 

datasets easily accessible. On the other hand, TensorFlow is more popular due to its big 

developer community that offers ready support and answers that guides the deep learning 

researchers to avoid pitfalls. TensorFlow blends well with other intuitive Application 

Programming Interfaces (APIs) and frameworks like Keras making it a popular choice for 

many [36]. 

The next step is to visualize the model and the metrics. It involves a graphical 

representation of the model performance and the input and output data to understand the 

training process and easily debug it [37]. Deep learning requires video data to be scaled 

from -1 to 1 by dividing the pixel values. A plot of such values is applied in counter-

checking that the data is between the range of -1 to 1. Scaled data ensures the network, 

does not suffer from exploding gradient problems. Loss and accuracy of the training and 

validation process are plotted to aid in the tracking of the model performance. The loss 
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plot is useful in tuning the learning rate, while the accuracy plot is useful in tuning the 

regularization factors. 

Debugging and improvement of the model are important in achieving the goals of the 

model. Jonathan Hui, advocates for a rigorous debugging process that starts by overfitting 

the model with a small amount of the training data and monitoring its training loss if it 

significantly drops after 5000 iterations [38]. If the model loss drops, incremental 

modifications to the model are suggested to ensure model depth. After model depth is 

added, training with more data is advised and additional regularizations to control the 

overfitting of the model. 

2.4.2 Model Design Considerations 

Although the model design is a part of the model development process, it requires more 

exploration to uncover separate ways researchers combine and use deep learning 

algorithms to make well-performing models. Some researchers use simple and 

incremental design principle that dictates starting simple and building more into the model 

[38]. Below are some of the design considerations that every researcher considers 

achieving better performance in deep learning. 

2.4.2.1 Use of Cost Functions 

The design of deep learning models requires an understanding of the cost functions since 

they affect the optimality of the solution. Cost functions are used to estimate the error 

between the predicted values and the expected values. The returned values are called cost, 

error or loss and can be applied to check optimal model parameters since at minimal error 
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model performance is high. Some examples of the cost functions include the mean 

absolute error (MAE), mean squared error (MSE) and Cross Entropy. The MSE has good 

mathematical properties that make it a better choice over the Mean Absolute Error (MAE) 

since its derivative is easier to compute [36]. 

2.4.2.2 Scaling of Inputs 

Deep Learning models use the training dataset to map the input and the output. Usually, 

the training sets have the X and Y variables, with X as the input and Y as the expected 

output [36]. The weights of the model are initialized to small random values and are 

adjusted through an optimization algorithm during the training process. The size of the 

input and output should be aligned to the small weights to lower the error [39]. 

Unscaled input variables result in an unstable and slow training process, while unscaled 

output on regression problems can result in exploding gradient which makes the learning 

process halt at some point. To deal with such design requirements, deep learning 

researchers use standardization techniques to scale the input and output between 0 and 1 

[36]. 

2.4.2.3 Batch Normalization 

The problem of unbalanced nodes at the layer output before the activation function. To 

smoothen the training process, it is advisable to normalize the output of the nodes. Batch 

normalization is therefore applied to the Convolutional Neural Networks (CNN) to 

normalize the outputs [36]. Batch Normalization computes the mean and the variance of 

the spatial location, and it uses the same mean and the variance to normalize the node 
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output at each location. In Recurrent Neural Networks (RNN) layer normalization is used 

instead [40]. Layer normalization is different in the sense that it calculates the mean and 

the variance at every layer, which is applied to normalize the outputs of layer nodes. 

2.4.2.4 Activation functions 

Choice of activation functions has been noted to affect the performance of the models 

hence, activation functions should be part of the interest in designing the deep learning 

models.  Activation functions take the output signal from the previous cell as input and 

convert it to a form to be used as input to the next cell. For instance, Rectified Linear Unit 

(ReLu) introduces non-linearity and Leaky ReLu replaces zero values with some 

predefined value [38].  

It has been found that non-linear activation functions are preferred in the deep learning 

design since they limit their values to some range, hence preventing computational 

overload. The most desirable feature of the activation functions in deep learning is the 

introduction of non-linearity. Complex problems require a higher degree of complexity to 

learn non-liner patterns [38]. 

Good activation functions should not shift the gradient to zero in deep layers to avoid the 

vanishing gradient problem. These activation functions are zero centred and symmetrical 

at zero to avoid shifting of gradients. The activation functions should be computational 

inexpensive and differentiable in the gradient descent process. 

Some examples of non-linear activation functions include sigmoid, softmax, tanh, ReLu 

and LeakyReLu. Tanh and Sigmoid functions have been found to cause enormous 
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vanishing gradient problems and should not be used in deep learning [38]. On the other 

hand, ReLu is good for a start, and it can be replaced with LeakyReLu if the dying ReLu 

problem (model stops learning) is encountered [38]. 

2.4.2.5 Checkpoints Design 

The incorporation of checkpoints in deep learning model design is an important design 

consideration to enhance model scalability. The trained model epochs are saved to be 

reloaded later. The saved checkpoints can be compared and the best load. This model 

design paradigm allows the model to be trained continually even after the initial training 

[36]. 

2.4.2.6 Addition of Custom Layers 

In some cases of deep learning, custom made layers can be added to the model.  Some 

reasons that influence the creation of user-defined layers include unit testing of the 

forward pass and backpropagation processes. Researchers, with intention of introducing 

custom computational operations to the model, can add custom layers to the model [36]. 

2.4.2.7 Optimizers 

Optimizers are the algorithms used to alter the attributes of the deep learning network.  

Optimizers alter attributes like the learning rate and the learning loss in the deep learning 

network. Optimizers can change the weights in the neural network. Some examples of 

optimizers include the Gradient descent that is used in linear regression, Stochastic 
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Gradient Descent, Mini-Batch Gradient Descent, Momentum, Nesterov Accelerated 

Gradient, Adagrad, AdaDelta and Adam [39]. 

Adam is the best optimizer for use in deep learning since it maintains a learning rate for 

all parameters and adapts them separately as learning unfolds. Adam optimizer has four 

parameters i.e., learning rate, the exponential decay rate for the first moment estimation, 

the exponential decay rate for the second moment estimation and finally € denotes a small 

value that replaces zeros to avoid division by zero [39]. 

2.4.3 Model Improvement Strategies 

Deep learning models do not achieve perfect accuracy, but they can improve through 

rigorous tuning and debugging processes to achieve comparable performance to the state-

of-the-art models or baseline models.  The improvement process involves the systematic 

analysis of the model structure to find areas of weakness. The model structure can have 

areas of weakness in the model depth, dataset quality, model regularization and activation 

functions. 

2.4.3.1 Improvement of model capacity 

Deep learning networks can be added with more layers to increase the learnable 

parameters which in turn makes the model extract more features from the data.  Some of 

the considerations while model depth is being increased include the addition of small 

filters since the small filters like 3x3 and 5x5 work better than larger filters [41]. 
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The process of tuning models is purely empirical. That means the improvement is open 

experiments with minimal known outcomes. The experiment is aimed at overfitting the 

model by having, a deeper network that extracts more features from the model. Later the 

overfitted models are toned down through regularization and dropout. The regularization 

involves the introduction of layer normalization and dropout functions. This process is 

repeated until the model improves its accuracy [41]. 

2.4.3.2 Dataset Collection and Clean-up 

When analyzing the model with the intention of improvement, analysis of the dataset is 

important. It has been noted that analysis of the false errors and true errors (bad 

predictions) can be traced back to the low-quality dataset. If bad predictions are caused 

by the dataset, it is advisable to preprocess the data or use a variety of datasets [41]. 

The collection of samples has serious effects on the model accuracy. For instance, if an 

image dataset was to be used in a deep learning model, high-quality images are 

recommended and filtering out the unwanted data in those images will increase the model 

accuracy. 

Complicated scenes in imagery and video datasets call for deeper convolutional networks 

with smaller filters to untangle scene complexity. More data should be used to train the 

model since deeper models have more trainable parameters which require a lot of data. 

Data size threshold can be achieved through, the collection of data with variety and the 

creation of variations of the same data through transformations such as reflections, 

zooming and others. Therefore, the use of data augmentation is advised [41]. 
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2.4.3.3 Learning Rate Tuning 

While debugging the learning rate of the model, the non-critical hyperparameter can be 

turned off or initialized to zero. In some cases of deep learning, the default learning rate 

works well. However, depending on the nature of the data and the model, the learning rate 

might need some tweaking [41]. 

For instance, the Adam optimizer has a default learning rate that gives rise to high model 

performance. Learning rate should be among the last model improvement attempts after 

the other parts of the model have been perfected and the model training loss has failed to 

drop [39]. 

The usual learning rate is from 1 to 1e-7. Therefore, the best practice for tuning the learning 

rate is reduction or increment of the rate by factors rate of 10.  Deep learning engineers 

recommend dropping the rate gradually with close monitoring of the model loss. It is 

notable that when the learning rate increases the training loss goes up consistently and 

vice versa [39]. 

Other hyperparameters that can be tuned during model improvement include mini-batch 

size, regularization factors and layer-specific hyperparameters like the dropout. Mostly, 

mini-batch size assumes either 8, 16, 32, or 64 values. However, it has been noted that a 

small batch size has the smoothest gradient descent. Therefore, for models that take a long 

training time, small-batch size should be used to ensure that, learning oscillations are 

shorter and there is less training loss [11]. 
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2.4.3.4 Model Regularization 

The gap between the validation and training accuracy can be minimized through the 

improvement of the validation accuracy which is usually achieved by tuning down the 

overfitting within the model [42]. Model regularization mechanisms reduce the overfitting 

within the model. Some examples of the model regularization include Dropout, Sparsity, 

L1, L2 Activation Functions, Layer Normalization, and others. 

Model regularization seeks to solve the problem of model generalization, which is the 

ability of the model to perform well on new input test data. Regularization methods put 

constraints on the model intending to introduce restrictions to the parameter values to 

limit the capacity of the model [43]. A group of regularization mechanisms use parameter 

restrictions while others add objective functions (Ω(ɵ)) which introduces a soft constraint 

on the parameter values. The objective function can be introduced in neural networks.  

Commonly used forms of regularization include L2 and L1 regularization. L2 is commonly 

known as the weight decay since it pushes the weights toward the origin by addition of 

the regularization term Ω(ɵ) = 
1

2
||w||22 [42].  L2 makes the model use all its inputs rather 

than leaving some of the inputs. It shrinks the weight vector by a constant factor before 

gradient update.  On the other hand, L1 introduces the sparsity property by making the 

weight vectors awfully close to zero. At zero weight vector, it implies that the 

corresponding features were discarded. Hence, reduction of overfitting [42]. 

Other than tuning the model, the improvement process can involve the use of different 

deep learning algorithm variants or the introduction of new algorithms within the model. 
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A model that has Convolution Neural Network as the building block can replace the 

ConvNet with 2DConvNets or 3DConvNet to extract more features depending on the 

nature of the data. For instance, a Convolutional Neural Network-based image generator 

can incorporate time sequence by adding the recurrent neural network to the model i.e., 

LSTM or ConvLSTM [41]. 

2.5 Deep Learning Models Evaluation and Validation 

In similar research work, researchers use the systematic review to determine the best deep 

learning models in anomaly detection. Different models are analyzed, and their accuracy 

scores are tabulated and compared to reveal underlying patterns. Experiments are set up 

using the selected deep learning algorithms then several parameters like training and 

performance are evaluated. For instance, an empirical study that evaluates deep learning 

networks used in anomaly detection utilizes various metrics. Some of the measures used 

in these papers include training time and model accuracy to evaluate training complexity, 

and F-measure (F1-Scores), which are used to estimate the performance of the model. F-

measure combines precision and recall which are particularly useful in measuring the 

accuracy of classification. Another important metric used is Mattew Correlation 

Coefficient (MCC)which is used to estimate the quality of binary classification. The 

coefficient value is interpreted -1.0 (poor), 0.0 (random) and 1.0 (good) [44]. 

[45] describes how to evaluate the performance of the deep learning models through 

confusion matrix, accuracy, precision, specificity, F1 Score, Precision-Recall or PR curve 

and Receiver Operating Characteristic (ROC) curve. Terms introduced here include, True 

Positive (TP) which indicates the predicted positive is positive, and False Positive (FP) 
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which indicates that the predicted positives are negative. In addition, True Negatives mean 

that the projected negative is negative and finally the False Negatives indicate projected 

negative is positive [45]. Limited research has been conducted on the assessment of deep 

learning models used in the identification of anomalies, specifically in surveillance 

videos. 

Better evaluation models as indicated by Nighania [49] include Precision which is 

calculated by the percentage of the total predicted positive instances. It answers the 

question, ‘What percentage is the model right when it is saying is right’. It is given by 

True Positives divided by the total of all positives. Recall/ Sensitivity/ True Positive 

Rate measure describes the percentage of positive instances (TP) out of the total actual 

positive instances (TP+FN) in the dataset. The measure determines, ‘the number of right 

outcomes the model missed. Specificity is another measure that calculates the percentage 

of negative instances (TN) out of the actual negative instances (TN+FP) [45]. 

Recommended metrics by Nighania include the PR (Precision and Recall) Curve, which 

is a plot of precision and recall for various threshold values. The top right part of the curve 

portrays an ideal space where we get high precision and recall. The choice of predictor 

and threshold values are dictated by the type of application.  ROC Curve (Receiver 

operating characteristic) is plotted against True Positive Rate and False Positive Rate. 

ROC AUC is the area under the curve and the higher its numerical value the better. True 

Positive Rate (TPR)= Recall =   while false positive rate (FPR) =1- Specificity =  [45]. 

This literature provides ways to evaluate and validate the models which played a major 

part in our research. 
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2.6 Conceptual Framework 

The literature review found the following relationships among the ideas within the 

research study. The reviewed theories revolved around the model architecture, dataset 

quantity, quality of data preprocessing and the model prediction accuracy. Figure 2.1 

below illustrates the conceptual framework. 

  

 

 

 

  

Figure 2.1: Illustration of the conceptual framework 
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2.7 Summary 

In conclusion, the literature review identified the main gaps: First the literature has shown 

immense growth in the detection and identification of abnormal scenes like violent scenes 

within surveillance videos. Deep learning models have been used to detect anomalies. Yet 

there is still a challenge in identifying which is the best model among all those 

implementations. The research gap exists in finding out empirically the best deep learning 

model for use in anomaly detection specifically in surveillance videos. 

Secondly, although the best performing deep learning models used to identify and localize 

anomalies include 3D-CNN, Conv-LSTM (Composite Neural Network) and Conv-LSTM 

(auto-encoder). Although they have achieved quite commendable performance, we have 

seen that there are still errors present while detecting anomalies in surveillance videos. A 

research challenge exists in improving the accuracy of the deep learning models.  
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CHAPTER THREE 

METHODOLOGY 

3.1 Introduction 

This chapter describes how the research itself was conducted. Research methodology 

links theory and the data for purposes of analysis thereby gaining insights into the research 

problem. Strategy and methods are well aligned for the research study. 

3.2 Research Design 

The research design that was used to conduct the research was a systematic literature 

review and experimentation. This chapter explores the two research methods extensively. 

3.2.1 Systematic Literature Review 

To gain full insight into the research problem and form a basis for a solution. A systematic 

Literature Review was used to gather the relevant knowledge to conduct the study. In the 

first objective, a review of the deep learning models used in video anomaly detection was 

conducted.  Opensource papers published since 2016 in this area were analyzed and the 

available deep learning models were identified and ranked. The review discovered the 

underlying technologies and trends in video anomaly detection using deep learning. 

3.2.2  Experimentation 

Experimental Research Design applies a scientific approach to the research problem by 

allowing variables to be manipulated and their effects on other variables to be measured 
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[46]. This research strategy is common in deep learning research due to its nature of 

allowing the comparison of different models with a forthright logic. 

True experimental research design was adopted. True experimental research design relies 

on statistical evaluations to approve or disapprove research hypothesis. True experimental 

design established a cause-and-effect relationship within the study. This research design 

required the study be formed with a control group which was taken as the model before 

enhancement. True experimental design also required an independent variable. In the 

study, the model depth (learnable parameters) is taken as the independent variable. 

A pre-test posttest-only control group design was used. The model’s accuracy was tested 

before and after the enhancement. The control group was composed of the test cases 

before the model was enhanced while the experimental group was composed of the 

enhanced model test cases. The accuracy of both control and experimental groups were 

tabulated and their differences are analyzed further.  

Our research problem required a comparison of the model before and after experiment to 

point out the impact of the improvement done to the model. The experimental design was 

best suited for the problem at hand. Other researchers have applied the same methodology 

to similar problems. For instance, [47], [48], [22], [49]. 

Two classes of the experiments were set up. The first set of experiments was used to 

investigate 3 chosen models from the reviewed models. The second set of experiments 

was used to improve the selected model and validate the improved model. 

Experimentation allows the comparison of the models by feeding the different models 
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using the same dataset and running the model using similar computing resources. That 

allowed the performance and effectiveness of the models to be compared. Similarly, while 

improving the model, experimentation was used where model parameters of the selected 

model were optimized to increase accuracy while the existing model was used as the 

control group to establish the improvement done. 

To identify the most effective deep learning model for the identification of anomalies in 

surveillance videos, Multiple Instance Learning [22], Spatial-Temporal 

Autoencoder(STAE) [50] and Generative Adversarial Network [51] were implemented to  

determine the most appropriate for use in anomaly detection of surveillance videos. 

A comparative empirical study was conducted to analyze the effectiveness models in 

identifying anomalous activities. The models indicated above were then trained and tested 

while various metrics like precision, specificity, ROC curve and PS curves were used to 

provide empirical evidence of the best model. 

The selected deep learning model was enhanced through various improvements to the 

model. The enhancements included optimization of the model hyperparameters and 

systematic code review. 

The final part of the study involved validation of the improved model, a comparative study 

through the ROC curve and Precision and Recall (PR) curve. The plot of both models, old 

and improved can provide enough validation evidence of the improvement by running the 

model across 2 validated datasets. 
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The datasets were downloaded from public datasets like the UCF database of real-world 

anomalies [22], UCSD database of crowded scenes on a sidewalk [35], Shangai Tech 

database of staged sidewalk surveillance and some of the codes borrowed from GitHub. 

3.3 Design of the Experiment 

Experiments were set up in Google Collab and Google Cloud due to the computation 

power required. Google Collab offered ready to deploy platform which was especially 

useful for writing code and debugging the code before large-scale deployment. Since 

Google Collab is free it allowed stepwise debugging and incremental enhancement of the 

model. For lengthy training and testing, the Google Cloud platform was used due to its 

stability and infrastructure scalability. Google cloud offers infrastructure as a service and 

scalable computing resources on-demand, which are quite suitable for the running of deep 

learning experiments. 

Python-based frameworks and libraries were used for the experiments due to their wide 

documentation and suitability in deep learning libraries like Keras and TensorFlow. In 

addition, it has shown the best results while solving data science problems.  

The model improvement was done using Python 3.7. The hybrid model was crafted under 

Anaconda Development Environment, which puts together all frameworks needed like 

OpenCV. TensorFlow, Keras. Matplot, FFmpeg and sckit-learn libraries. The libraries 

were configured to work in jupyter-notebook for interactive coding in both Google Collab 

and Google Cloud. 
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The projects were set up and run through the Jupyter notebook integrated development 

environment (IDE). Divergent functions were integrated from input, processing and 

output programs. Both training and anomaly prediction accuracies were recorded for 

comparative study. A common dataset was selected from real-world anomaly datasets 

which was used for training and testing the selected models and then the most suitable 

model was selected for enhancement. 

The data needed during the research was surveillance videos that had diverse types of 

real-world anomalies like violence, burglary, weapons, running, crowding and others 

which are unusual. Since a comparison among multiple models was done, a large, diverse, 

and balanced dataset to reach a convincing conclusion was used.  Purposive sampling was 

used to select existing datasets from public deep learning research centers which are 

available online [52]. Purposive sampling was adopted to ensure the datasets used by the 

old models were the ones used to train the improved model. Purposive sampling was 

considered due to its non-random criteria. Purposive sampling is referred as judgement 

sampling was due to its ability to base sampling on the researcher judgement. Researcher 

had the power to select the most information rich datasets [52] that benefited his study. 

Homogeneous sampling technique was used to acquire a homogeneous sample of dataset 

that contains only surveillance videos. The sampling technique focused on the datasets of 

that were used in analyzed papers and the improved model.  A video dataset that was large 

enough for deep learning and surveillance anomalies rich videos were considered. For 

instance, for deep learning models’ a big dataset is required for training and testing. 
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Some of the tools which were used to extract frames from the videos include the FFmpeg 

video library. FFmpeg library is a code library that allows manipulation of the videos and 

breaking down of the videos to get images. Only a computer with the internet was used 

to download and prepare the dataset for use in model training and validation. 

Recently released large-scale real-world anomaly detection benchmark, UCF (University 

of Central Florida) Crime, UCSD (University of California San Diego) Ped1 and Ped2 

[39] were used to evaluate our model improvement [55]. These datasets consist of 1900 

real-world surveillance videos, half of which contain anomalous events and the other half 

normal activities. For the anomalous videos, violent scenes, intruders in the park, 

commotion, and running were the majority anomalies. The training split and testing split 

were based on the model architecture since some models required to be trained with only 

normal videos and tested with anomalous videos. 

3.4 Research Procedure 

Implementation of study can be categorized into three main phases namely: investigation 

of chosen deep learning models to determine the most effective, development of an 

improved deep learning anomaly detection model and finally validation of the developed 

deep learning model.  

The research procedure can be summarized in a simple diagram. Figure 3.1 above, 

illustrates the research procedure. The arrows indicate the flow of activities between the 

objectives and the activities. Figure 3.1 indicates major portions of this research. 
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3.5 Data Analysis 

 

Data analysis describes how the data was collected from the experiments and how the 

data was processed to gain some insights into the research problem. 

3.5.1 Deep Learning Models Evaluation Experiment 

Evaluation of the deep learning model’s accuracy utilized the following measures: PR 

(Precision-Recall) Curve, which is a plot of precision and recall for various threshold 

values. The top right part of the curve portrays an ideal space where we get the highest 

accuracy and ability of the model to remember. 

1. Determining the best deep learning model for anomaly detection 

 

 

Implementation of the 

popular deep learning 

models: 3DCNN, LSTM, 

Comparative study, to 
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3. Validation of the Enhanced Deep Learning model 
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Figure 3.1: A Summary of the Research Procedure 
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 ROC (Receiver operating characteristic) will be plotted against valid positives TP Rate 

and invalid positives FP Rate. ROC AUC is the area under the curve and the higher its 

numerical value the better.  

True Positive Rate (TPR)= Recall    while, 

False positive Rate (FPR) =1- Specificity [45]. 

The accuracies scores of the evaluated models were recorded and tabulated. Their 

accuracy score in different datasets was averaged for ease of comparison. 

3.5.2 Validation of Enhanced Model Experiment 

The best-selected model was improved, then trained and validated.  Then, both training 

and testing accuracies were recorded for the enhanced model and control model.  The 

accuracy values were captured in a table for purposes of comparison. To test the model's 

effectiveness, the video-based ROC curve and corresponding area under the curve (AUC) 

were calculated to evaluate the accuracy of the model [53]. 

The area under the ROC curve (AUC-ROC) is an independent metric of the model 

accuracy [53]. The Receiver Operating Characteristic (ROC) curve is the plot of 

sensitivity versus specificity. Specificity can also be referred to as the false positive rate 

while sensitivity is the rate of the true positive. Then to find a single value to indicate the 

model performance, the area beneath the curve commonly known as (AUC) is calculated.  

AUC is the ratio of the area underneath the curve and the total area. The AUCs of the 

ROC curve shall be tabulated together for comparison. 
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After accuracy was tabulated, a test of significance was conducted to establish if the 

enhancement was statistically significant. 

3.6  Summary 

This chapter has described the procedure that was followed to conduct the research. In 

summary, it involved evaluation of the popular deep learning model, implementation, and 

improvement of the selected model.  It also described the model evaluation metrics that 

were used to validate the enhanced model.  
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

4.1 Introduction 

This chapter is dedicated to the implementation of the study objectives. The first objective 

was to investigate empirically the deep learning models used in anomaly detection in 

videos to determine the best. The chapter starts by introducing the deep learning model 

architectures, published models since 2016 that were reviewed and tabulated. The 

considered models are implemented, and their performance is compared with the 

published accuracies and the best pure deep learning solutions are selected. The second 

objective was to improve the selected deep learning model for the discovery of anomalies 

in surveillance videos. The third objective was to validate the improved model. This 

chapter also describes the data preparation process, the improvement process, the outcome 

and finally the validation process. 

4.2 Deep Learning Models 

The main purpose of the study is to enhance deep learning anomaly detection models 

using depth tuning. It is important to understand what a deep learning model entails and 

the distinctive design architectures. Deep learning models are composed of neural 

network variants that are multilayered. The architecture of deep learning models is 

extremely flexible since the models can differ in the number of layers, filter size and 

dimension, as well as the basic constructs. Models used in the detection of anomalies in 

videos have Convnets, ConvLSTM and 3DCNN as the basic building blocks [20].  
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A layer within a deep learning model is composed of interconnected nodes(neurons). A 

node may be connected to all other nodes in the adjacent layers or not. Data fed through 

the model goes through each layer and is transformed into an abstract representation also 

known as extracted features. The training process sets the weights across different 

transformation functions. Then the model modifies the weights using backpropagation 

where the output is traced back to the input modifying the weights. 

Researchers have utilized this knowledge to design models using deep learning 

frameworks like PyTorch, Keras, and TensorFlow.  A model can be composed of different 

deep learning algorithms. Different deep learning algorithms are stacked together to 

produce a model. For instance, a model may have Conv2D, and ConvLSTM, layers 

combine to get a model that works for sequential problems using high dimensional data 

like videos. Problem nature inspires the model design [54]. 

Hybrid models combine several deep learning models, which are optimized to work 

together. In some cases, like Sultani multiple instances learning model [22], it combines 

a pre-trained feature extractor and another model to rank an anomaly score of the bagged 

normal and abnormal scenes. Some of the pre-trained models that have been used 

extensively to extract features from videos include the Facebook C3D Model [22], 

Inception v3 [55], YOLOV3 and open pose technology from Carnegie Melon university 

[27]. These models are used to extract features like, motion, objects and even body 

posture. Those features are transferred to another model that is trained to identify 

anomalies in the features. 
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4.2.1 Review of the Deep Learning Models in Anomaly Detection 

A review of deep learning solutions for anomaly detection in surveillance videos, 

published since 2016 was conducted. Open-source publications were considered, due to 

their unlimited availability. The systematic review was conducted in Google Scholar, 

Science Direct, Elsevier Journal Finder and ACM digital library due to their extensive 

ability to list the publications from peer-reviewed journals. 

The review aimed to provide a holistic map of the published deep video anomaly 

solutions, track their growth and the trends in this active research area to rank the best 

models in the area. Intelligence surveillance is still an active research area due to its 

extensive application in security.  

The nature of the reviewed models includes supervised, weakly-supervised and 

unsupervised learning. Supervised models are somehow limited to specific anomalies 

since anomalies are many and are subjective. For instance, some models are limited to 

traffic anomalies [33], home intrusion and violence [31]. Supervised solutions have failed 

to generalize the anomalies since the definition of anomalies is subjective and labelling 

of all anomalies is complex since anomalies are rare within videos. For instance, within a 

video clip, only a few frames have anomalies.  

The weakly supervised class of the models utilizes small, labelled data while the rest of 

the data is unlabeled. This is a very common trend in deep learning especially in hybrid 

solutions [47] [56] [57]. The hybrid models contain two or more deep learning models.  

In some cases, the hybrid solutions are typical cases of transfer Learning. 
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4.2.1.1  Transfer Learning 

Transfer Learning describes the handover of the knowledge from one model to another. 

This approach uses an already pre-trained model to solve a different task. Transfer 

learning is useful when there is a scarcity of data or computational resources since it 

allows the models to use less data by re-using the learned weights from the pre-trained 

model. 

 Transfer Learning was found as a growing trend in video anomaly detection and deep 

learning. One strategy of implementation of transfer learning through feature extraction. 

Pretrained models were used to extract features from labelled video and imagery data. 

The pre-trained models used mostly in the reviewed models include Facebook C3D Model 

[22], I3D [55], and YOLOV3. 

Facebook C3D borrows from BVLC Caffee which was modified to support 3D 

Convolution and pooling [17]. C3D model was trained by Facebook Researchers on sports 

videos to extract features from videos. Which can be useful in down sampling the dataset 

for effective processing. The pre-trained model has been used in various models. For 

instance, [22] utilizes C3D for feature extraction in their paper. The model is set to input 

a video and then it extracts a tensor of 4096 features.  

The use of pre-trained models to extract features from videos appears as a growing trend 

in anomaly detection research. Other feature extractor models that were found include 

Inflated 3D, which is a pre-trained model on the Kinetics-400 dataset [58]. It extracts 
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features from videos and gives an output of shape 1024. By default, frames fed should be 

of size 224x224 and video to be recorded at 25 frames per second (fps). 

Another important feature extractor used by researchers [59], [60] is You Look Only Once 

Version3 (YOLOv3) which is a deep convolutional neural network that identifies specific 

objects in videos or images.  YOLOv3 is an improved version of YOLOv2 that borrows 

heavily from the DarkNet model that was trained on Imagenet. YOLOv3 combines two 

53 layers of Darknets to form a deep 106-layer network [61]. Object detection in the 

model happens within three separate locations. First Detection happens at the 82nd layer 

that uses a 1x1 kernel, the second detection happens at the 94th layer that uses a 2x2 kernel 

and the third detection occurs at the 106th layer that uses a 2x2 kernel.  The model also 

predicts bounding boxes on the objects and draws them around the objects and labels the 

objects. This detector was used to extract objects from videos which were used to define 

anomalies and normal scenes, on which anomaly detection was based on. 

Transfer learning was identified in the following papers, Sultani [22], that used C3D pre-

trained model combined with a light classifier to assign a ranking score for the normal 

and abnormal instances. The C3D model was used for feature extraction. Motion and 

trajectory features were extracted from the real-world UCF crime dataset. 

[62] used pre-trained CNNs in anomaly detection. Nazare [62] explored several CNN 

networks including VGG-16, ResNet-50, Xception and DenseNet-121.Their paper [62] 

investigated the role of pre-trained image classifiers in feature extraction to solve the 

problem of anomaly detection. The paper found that the Xception model outperforms its 

counterparts, and it can be used for features extraction even though the whole idea 
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performs poorly compared to other anomaly detection methods. Other examples of 

transfer learning found in the review include [63], [48], [60], [59], [58], [64], [65], [51]. 

4.2.1.2 Autoencoders 

Autoencoders are a substantial part of the survey, out of 30 papers reviewed, 11 papers 

were found to have used the autoencoder model design paradigm. Which is around 36% 

which is significant statistically. Thus, autoencoders can be considered a growing trend 

in video anomaly detection. Autoencoders are widely used due to their unsupervised 

nature, and ability to learn without human supervision or labelled data. The golden idea 

behind autoencoders is the reconstruction error that arises after when reconstructing the 

abnormal frames. The reconstruction error of the irregular videos is larger than regular 

videos.  This idea is applied in designing models that detect anomalies in videos. 

The autoencoders found in the review have different architectures and deep learning 

algorithms. For instance, [66] integrates a Conv-AE and Inception Module to form a deep 

autoencoder that detects the appearance and motion features from the videos. The decoder 

part of the model has two units that are dedicated to motion and appearance. 

Duman and Erdem autoencoder [56] is composed of Convolutional Autoencoder and 

Convolutional LSTM. This framework uses Optical Flow to extract features of speed and 

trajectory from the videos. The optical flow output is fed to the autoencoder which returns 

the reconstructed optical flow map. The reconstructed output is subtracted from the input 

to acquire the mean squared error that is used to calculate the regularity score that 

indicates the abnormality level of every frame. [67] implemented an unsupervised 
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solution for anomaly detection in crowded scenes that was based on autoencoder design. 

The model was constituted of Conv-LSTM. Raw image sequences and edge image 

sequences were used to train the model.  

Spatial-Temporal autoencoder [68] is another variation of the autoencoders encountered 

in the review. This model was made by [69] in their paper named Spatio-Temporal 

AutoEncoder for Video Anomaly Detection. Their model is composed of 3D 

convolutional layers.  The architecture of the network is made up of an encoder and two 

decoder branches. The decoder branches consist of the prediction branch and 

reconstruction branch. The two branches are used to create the prediction loss function 

and reconstruction loss function that are used to estimate the regularity score for 

anomalies locating. 

Pawar and Attar autoencoder is hybrid of convolutional autoencoder and LSTM 

autoencoder [21]. This presents another design paradigm of combining two different 

autoencoders to create a seamless model. The convolutional part takes care of the image 

part while the LSTM preserves the sequence. Reconstruction error is used to model the 

regularity score. 

Variational Autoencoder is an improvement of autoencoders that employs the use of 

probabilistic modelling to select the best reconstruction from the latent space. Unlike the 

normal autoencoders that encode the latent space as a single point, variational 

autoencoders generate their latent space as a distribution. [70] exploited this architecture 

to create a two-stream variational autoencoder to detect anomalies in both local and 

streaming videos. 
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Other unique autoencoders found include Bhakat and Ramakrishnan [71], Mahmudul 

Hasan et al. [72], Sabokrou and Fathy [49] and another case of Spatio-temporal 

autoencoder by Chong and Tay [50]. The Spatio-temporal autoencoder is different due to 

its building constructs. It employs time-distributed layers wrapped in conv2d layers for 

the spatial part and convlstm2d for the temporal part. 

4.2.1.3  Ensemble Learning 

Other reviewed models are random cases of ensemble learning that combine multiple 

learning algorithms to get better predictive performance than the constituent learning 

algorithms alone. For instance, Zahid et al. [58] is a typical case of ensemble and transfer 

learning. The model combines a 3D convolutional network and a Fully Connected (FC) 

Network [58]. [73] is another case of ensemble learning that combines Conditional 

Generative Adversarial Networks, R-CNN and Support Vector Machines (SVM). 

4.2.1.4 A Summary of the Deep Learning Solutions 

A summary table of the models reviewed their learning technique and underlying deep 

learning algorithms are illustrated in table 3: 

Table 4.1: A Summary Table showing the models reviewed in the review. 

Publication Learning 

Technique 

Deep Learning 

Algorithm/Models 

Datasets Overall 

Accuracy 

Chong and 

Tay  [50] 

Auto-encoder ConvLSTMAE UCSD Ped1, 

UCSD Ped2 

87% 

Sabokrou et 

al. [49] 

Auto-encoder Sparse AE & Non-

Sparse AE 

UCSD Ped2 

& UMN 

90.8% 

Hasan et al, 

[72] 

Fully Conv Feed 

Forward Auto-

encoder 

FC Convnet AE UCSD Ped1 

UCSD Ped2 

83.18% 
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CHUK 

Avenue 

Chalapathy 

 et al. 2017  

[74] 

Robust PCA PCA Cifar10 89% 

Sultani et al. 

[22] 

Multiple Instance 

Learning (MIL) 

C3D, FC Convnet 

SVM Classifier 

UCF Crime 

Dataset 

75.41% 

Nguyen [75] Generative 

Adversarial 

Network 

GAN- Generative 

Adversarial 

Network 

AI City 

Challenge 

91% 

Xu et al [70] Variation Auto-

encoder 

2 stream 

Variational 

Autoencoder 

(VAE) / GAN 

- - 

Doshi and 

Yilmaz [76] 

Continual 

Learning 

YOLOv3 

KNN -K- Nearest 

Neighbors 

UCSD, 

Avenue, 

Shangai Tech 

85% 

Kavikuil and 

Amudha [77] 

Feature Learning CNN - - 

Liu et al. [57] Transfer Learning Binary Networks, 

3DCNN 

citySCENE 94.6% 

Ullah et al. 

[64] 

Ensemble/Transfer 

Learning/ 

CNN, Residual 

LSTM 

UCF, 

UMN,Avenue 

98.3% 

Vu et al. [73] Ensemble 

Learning 

R-CNN, SVM, 

CGAN 

Avenue, 

UCSD Ped1, 

Ped2, Shangai 

Tech 

91.7% 

Cinelli et al. 

[65] 

Residual Network ConvNet CDNET2014 84.9% 

Bhakat and 

Ramakrishnan 

[71] 

Auto-encoder ConvLSTM Avenue, 

Surveillance 

Office, Police 

73.6% 

Ullah et al. 

[78] 

Transfer Learning Pre-trained CNN, 

BD-LSTM 

UCF Crime 89.05% 

Zahid et al. 

[58] 

Transfer & 

Ensemble 

Learning 

Fully Connected 

Network, Inception 

V3, 

UCF Crime - 

Murugesan 

and 

Thilagamani 

[79] 

Ensemble 

Learning 

MLP-RNN - - 

Nazare et al. 

[62] 

Transfer Learning Pre-trained CNNs UCSD Ped2 76% 
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Aberkane and  

Elarbi  [47] 

Reinforcement 

Learning 

Deep Q Learning 

Network (DQN),  

UCF Crime - 

Bansod and 

Nandedkar 

[63] 

Transfer Learning Pre-trained CNN 

(VGG16) 

UCSD, UMN  

Cinelli [48] Transfer Learning Pre-trained CNN 

ResNet 

CDNET2014 85% 

Pawar and 

Attar 2021 

[80] 

Auto-Encoder ConvAE, LSTM 

AE 

- - 

Zhao et al. 

[69] 

Spatial Temporal 

Auto-encoder 

(STAE) 

ConvLSTM UCSD Ped1 

& Ped2, 

CUHK 

Avenue 

86.8% 

Ramchandran 

and Sangaiah  

[67] 

Auto-Encoder ConvLSTM UCSD Ped1 

& Ped2 

- 

Duman and 

Erdem  [56] 

Auto-Encoder OF-ConvAE-

ConvLSTM 

Avenue, 

UCSD Ped1, 

Ped2 

91.53% 

Doshi and 

Yilmaz  [60] 

Transfer Learning Pre-trained 

Convnet 

(YOLOV3) & 

Least Square 

Generative 

Adversarial 

Network LS-GAN 

CUHK, 

UCSD Ped2 

& Avenue 

84.83% 

Nasaruddin 

[81] 

Transfer Learning 3D-CNN UCF Crime 95.4% 

[82] Khaleghi 

and Moin  

- CNN UCSD - 

Doshi and 

Yilmaz [59] 

Transfer Learning Pre-trained 

Convnet 

(YOLOV3) & 

GAN 

UCSD PED2, 

CUHK, 

Shanghai 

Tech 

84.87% 

Nguyen [66] Auto-encoder 

Hybrid 

Conv-Net, GAN UCSD Ped2, 

CHUK 

Avenue, 

Subway 

Entrance, Exit 

91% 

 

 

Liu et al. [52] GAN GAN CHUK, 

UCSD Ped1 

& Ped2, 

Shanghai 

Tech 

83.76% 
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From the summary table, it can be noted that the best performing model in terms of 

accuracy is Ullah et al.is a typical case of transfer and ensemble learning that combines a 

CNN feature extractor with a residual LSTM network [78]. This model yields an overall 

accuracy of 98% per cent while detecting anomalies. This can be ranked among the best 

models. Unfortunately, more than 80% of the reviewed papers have not published their 

implementation code for further investigation or even improvement.   
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4.2.2 Experimental Investigation of the Reviewed Models 

The researcher found out that, many of the published papers in this area, failed to share a 

complete implementation code. This factor is among the greatest challenges faced by 

other researchers who want to build enhancements on the existing models. Less than 20% 

of the papers had published their implementation code and some publishing only some 

part of the implementation code. 

Three models had shared their complete code on GitHub, the Sultani et al Multiple 

Instance model [22], Chong and Tay Autoencoder [50] and Prediction based Anomaly 

Detector that uses Generative Adversarial Network(GAN) [51]. 

These models were implemented and further investigated to unruffle their internal 

working and learn ways of combing algorithms as well as the training, testing and 

evaluation techniques. Each model was investigated, and its model architecture was 

studied. 

 

4.2.2.1 Transfer Learning: Sultani Multiple Instance Model 

Sultani Multiple Instance Learning model [22], can be considered a breakthrough in this 

area due to its contributions. This model was among the pioneer works on anomaly 

detection that used transfer learning by utilizing a C3D feature extractor to extract features 

from the videos and multiple ranking algorithms that used Convnet and SVM. This paper 
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introduced the UCF Crime dataset, which has been widely accepted and used for research 

purposes within this domain. 

During the development of the Sultani Multiple Instance Learning model [22], researchers 

introduced the UCF Crime dataset. The UCF Crime dataset is composed of real-world 

anomalies. The UCF Crime dataset is 1900 hours long video dataset that was introduced 

by Sultani et al. [22] and is composed of real-life anomalies like Arrest, Arson, Abuse and 

many others [22]. The training set has both abnormal and normal videos as well as the 

testing set. Although usage of both classes is dependent upon the nature of the model to 

be trained. This dataset has been re-used widely by other academicians and is immensely 

popular. For example, [64], [58], [47] and [81] have used it. 

The Sultani et al. model [22] did not use the videos in their raw form, instead, the 

researchers used a C3D feature extractor to extract motion and appearance features. 

Figure 4.1 is an illustration of the C3D feature extractor. C3D is made up of deep 3-

dimensional convolutional networks [17]. Its architecture contains 3x3x3 convolutional 

kernels, followed by 2x2x2 convolutional kernels. In total, the model contains 8 

convolutional, 5 pooling layers and 2 fully connected layers. C3D feature extractor is 

important since it can extract motion and temporal features.  

Figure 4.1: C3D Feature Extractor internal architecture adapted from [17] 
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C3D feature extractor was borrowed from Caffe and Facebook research [17]. It was 

released with an open-source license. During the model investigation, the command 

illustrated in figure 4.2 was used to extract features from the videos and it outputs a vector 

of shape 4096. 

C3D feature extractor is compiled and run through a command illustrated in Figure 4.2. 

A video is passed to the command and the model extracts the features and it returns a 

vector of size 4096 as the output. 

The extracted features were vector files with 4096 dimensions. The outputs are text files 

for each video. These features are fed into the fully connected neural network that is used 

to get a ranking value for the normal and abnormal videos. Figure 4.3 shows the structure 

of the model that Sultani et al used [22]. 

Figure 4.3: Fully Connected Sultani Ranking model  

Figure 4.3 shows the structure of the Sultani ranking model that accepts the extracted 

features in vectors of size 4096 and then outputs anomaly status in the output layer. The 

Figure 4.2: Illustration of C3D feature extraction command 
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sigmoid activation function is used to extrapolate the anomaly ranking score. Figure 4.3 

shows the structure of the fully convolutional model used by Sultani to detect anomalies 

by using the output value of the model to rank anomalies in videos [22] The model was 

trained using both normal and abnormal features. The model was trained in batches. 

Figure 4.4 illustrates the training of the Sultani et al model and the saving of the training 

weights. 

Testing was done on the published weights and the saved model. To get exactly the 

accuracy published in the Sultani et al of 75.41% [22]. Figure 4.5 displays an illustration 

of the output of the testing process of the model. It shows the output of the model by 

Figure 4.4: Illustration of Sultani Model training on batch process [22] 
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printing the summary of the model and the time taken to run a successful training cycle. 

The accuracy scores were recorded and tabulated. 

 

Figure 4.5: Output of the Sultani Model Testing [22] 

4.2.2.2 Future Frame Prediction based Anomaly Detector 

Generative Adversarial Networks (GAN) have shown immense potential in generating 

videos and images. The GANs contain the discriminative and the generator network part, 

which is trained to generate video frames [51]. Future video frames are predicted based 

on the video frames and then compared with the ground truth frames to identify 

anomalies. This model used the CUHK Avenue dataset, UCSD Pedestrian Dataset and 

ShangaiTech Campus Dataset. This model is also a case of transfer learning since it uses 

Flownet to estimate the optical flow in the videos. Complete code of this model was 

shared on Github. The code was obtained, and the experiment was redone, and the 

accuracy published matches the experiment that was conducted. 
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Figure 4.6 shows the structure of the Generative Adversarial Network used by Liu [51], 

the image portrays the discriminator and the generative part of the model. The flow net 

part is used to calculate motion features within the frames, and it is used to point out 

abnormalities in the motion feature. 

 

Figure 4.6: Illustration of the GAN [51] generator, discriminator 

The model was tested using the weights from the paper and the accuracy tallies with the 

publication. Figures 4.7, 4.8, and 4.9 below, show images of some tests that were run and 

their accuracy output. 

Figure 4.7 shows the individual test cases being run during the model testing process using 

both the UCSD Ped1 and Ped2 datasets. The figures the looping of the test cases and their 

summation. 
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Figure 4.7: Testing of the GAN prediction model 

Figure 4.8 below, shows the output after all the test cases were run. This figure portrays 

the output of the ped2 dataset. It goes further to illustrate how the area under the curve 

(AUC) score was computed. Finally, a score of 0.9539 was obtained. 

Figure 4.8: Output of the Liu- GAN [51] model testing using the Ped2 dataset 

Figure 4.9 below illustrates the output obtained after all the ped1 dataset videos were run 

through the Liu-GAN model [51]. The output describes the time take in seconds and the 

frame per second property of the video. The output gives accuracy score of 0.8315. 
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Figure 4.9: Output of the Liu-GAN Model [51] testing using Ped1 Dataset 

4.2.2.3 Spatial-temporal Autoencoder 

Chong and Tay published their complete implementation code, this made it possible to 

investigate the model since their complete code is accessible as well as the datasets [50]. 

This model used frames to train and test the model. So, the first step was to extract frames 

in the videos and create a frames dataset. This model used the reconstruction error to 

identify anomalies since the normal frames have low reconstruction error compared to the 

abnormal frames. 

Figure 4.10 is an illustration of the code section that calculates the reconstruction error 

from the original frames and the reconstructed frames. The code calculates the Euclidean 

distance between the original sequences and the reconstructed sequences per every frame 

i. 

Figure 4.10: Illustration of the regularity score computation function 

The highlighted section within the Figure 4.10 illustrates the calculation of the regularity 

score by scaling of the scores between 0 and 1. This scaled the reconstruction error to 
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values between 0 and 1 and finally the value is subtracted from 1 to get the regularity 

score that indicates presence of anomaly. 

The model is constituted of spatial and temporal parts, with the spatial containing 

convolutional layers wrapped in time-distributed layers while the temporal part is made 

up of Convolutional LSTM layers that can preserve the learned weights across the 

temporal sequence. Below is the illustration of the spatial-temporal autoencoder by [50]. 

Figure 4.11: Chong and Tay Autoencoder Illustration 

Figure 4.10 illustrates the computation of the regularity score from the Euclidean distance 

while Figure 4.11 demonstrates the spatial and the temporal components of the model. It 

can be noted the use of convolutional and convolutional LSTM as the underlying deep 

learning algorithms. 

The model accepts a sequence of 10 images of size 256 by 256, which it encodes to the 

latent space and then decoded back to an output of 10 images of size 256 by 256. 

 

Spatial Encoding Part 

Temporal Part 

Spatial 

Decoding 
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The input and the output size of the autoencoders are usually the same. Therefore, frame 

width, height, and the number of frames in a sequence are the same for the input and the 

output. 

Figure 4.12 shows a plot of the regularity score per every frame in the short video. After 

the regularity score was calculated in figure 4.10, the regularity score sr(t) is plotted for 

every frame in the video to show the anomalies within the video. Anomalies are identified 

when the regularity score is low. 

 

Figure 4.12: Chong and Tay Autoencoder Regularity Score [50] 

The model returns a regularity score that is used to identify anomalies at the frame level. 

The highest picks on the graph indicate, high regularity score and hence that region has 

normal frames. Low points on the graph indicate the presence of anomalies since 

anomalies are irregular patterns.  
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4.2.3 Results of Experimental Investigation 

The first objective was to find the popular deep learning models and then select one model 

to be improved. More than 30 models were reviewed and less than 20% of the models 

were selected for experimental investigation since they had shared complete 

implementation code. The biased selection was based on the accessibility of the complete 

code.  Three models were hand-picked due to their availability. 

The models and the datasets used in them were studied further and run to identify 

parameters used in their training and testing. It is important to note that the 3 models 

selected as seen above are completely different in terms of their internal organization, 

constitution, and their design. Two of the models can be considered as transfer learning 

since they build upon knowledge from other previous models i.e., C3D and Flow net. This 

is advantageous since it improves the performance of the new models constructed but also 

troublesome since the pre-trained models can transfer errors to the hybrid model. 

Table 4.2 is a tabulation of the model accuracies, according to the different datasets used 

in the empirical investigations. 
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Table 4.2: Comparison of Frame Level AUC 

 Frame Level AUC comparison  

No. Method Accuracy per Dataset  

UCSD 

Ped1 

UCSD Ped2 Avenue UCF Crime Average 

1. Multiple Instance 

Learning, Sultani et al. 

[22] 

n/a n/a n/a 75.41% 75.41% 

2. STAE 

Autoencoder, Chong 

and Tay [50] 

86.14% 90.23% 81.23% 78.23% 83.96% 

3. Generative Adversarial 

Network Future Frame 

Prediction, Liu et al. 

[51] 

83.15% 95.31% 84.89% n/a 87.78% 

 

Table 4.2 above shows the comparison of the ROC curve AUC of three models with 

distinct learning techniques. All the models have shown high accuracy in anomaly 

prediction. The first model when compared with the second model does better in terms of 

accuracy. The GAN Future Frame prediction model [51] outperforms the Spatial-

Temporal Autoencoder [50] in some instances.  

The Multiple Instance Learning-Sultani Model [22] and the Future Frame Prediction Liu 

[51] models are complex due to their transfer learning nature where they borrow from 

other pre-trained models. They are susceptible to transfer of error and hence they are not 

considered for improvement due to their internal working complexity.  On the other hand, 

Chong, and Tay's [50] autoencoder is simple in its design since it is not a hybrid solution. 

The Chong and Tay autoencoder can be improved with ease, hence it was selected for 

enhancement [50]. The Chong and Tay model pays attention to the spatial and temporal 
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nature of the videos since it has spatial and temporal descriptors dedicated to extracting 

those features. Hence it was selected. 

4.2.4 Selected Model 

It was established from the previous objective that, the Chong and Tay Spatial-Temporal 

Autoencoder [50] was the chosen model to be improved. The improvement was aimed at 

the reduction of anomaly detection errors. Therefore, it is important to understand the 

architecture of the model before the improvement process. The design of autoencoders is 

composed of the encoder, latent space, and the decoder part. 

The Chong and Tay Spatial-Temporal Autoencoder [50] model will be referred to as the 

selected model herein and the improved model will be referred to as the enhanced model. 

The selected model is composed of spatial and temporal parts in its encoding and decoding 

parts. To better understand the architecture of the model, a graphical illustration of the 

model and a model summary printed from the code is shown below. 

The autoencoder learns the (normal) regular patterns from the training videos. The model 

has two parts namely spatial and temporal autoencoder. The spatial part extracts the 

location-based data. The spatial part encodes the location of objects within an image. The 

spatial encoder and decoder have two convolutional and deconvolutional layers 

correspondingly. 
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Figure 4.13: Illustration of the Spatial-Temporal Model Architecture [50] 

 

Figure 4.13 shows the design parts of the Spatial-Temporal Model before improvement. 

The temporal part of the autoencoder is composed of 3 layers of convolutional long short-

term memory ConvLSTM. The convolutional part is good at object recognition while the 

LSTM part performs well at sequence learning and time modelling. 

LayerNormalization is used between the layers to normalize the weights. This layer 

performs similar operations during the training and testing of the model. The 

LayerNormalization layer is used to stabilize the hidden state of the recurrent networks 

like ConvLSTM. Changes caused by the output of one-layer causes highly correlated 

changes summed in the inputs to the next layer. These changes cause the covariate shift 

10x256x256 
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10x64x32x32 
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problem which can be minimized by estimation of mean µ and the variance σ of the 

summation of inputs in each layer [40]. 

LayerNormalization statistics is applied to all hidden units in the same and it ensures that 

all hidden layers have the same normalization terms of µ and the σ. The mean of the layer 

is denoted by µ, and the standard deviation of the layer is denoted by σ.  Which are 

calculated as follows [40]: 

H denotes the number of hidden units in each 

layer. 

Therefore, the mean (µ) and the standard deviation (σ) of the layer are used to normalize 

the weights of the layer in a process called layer normalization.  

The model is trained using normal videos. The convolutional networks learn the weights 

of the filters during the training process, and they learn how to reconstruct the normal 

videos. Parameters like the number of layers, filters and filter size are set. These 

parameters can be tuned to increase the accuracy of the model. Therefore, model 

improvement involved tweaking the model parameters. For instance, a larger number of 

filters, extract more features from images and yield a better network that recognizes 

patterns in unseen images.  

The reconstruction error difference when reconstructing abnormal clips is used to 

calculate the regularity score that is used to estimate the abnormality score of every frame. 

It is paramount to understand the calculation of the reconstruction error of all pixel values 
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I in frame t, which is taken as the Euclidean distance between the input frame and the 

reconstructed frame. 

 

Figure 4.14: Euclidean distance applied to calculate reconstruction error 

Figure 4.14 portrays the reconstruction error calculated as the Euclidean distance. Where 

fw is the learned weights of the model, x(t) is the input frame and the fw(x(t)) defines the 

reconstructed video frame. Their difference is referred to as the Euclidean distance 

denoted by e(t). 

Abnormality score Sa(t) was calculated by scaling the Euclidean distance from 0 and 1. 

Scaling of the Euclidean distance to obtain the abnormality score involved taking the e(t) 

Euclidean distance per pixel and subtracting the ratio of the least e(t)min divided by the 

largest Euclidean distance denoted as e(t)max in figure 17. 

Afterwards, the regularity score Sr(t) was derived by subtracting the abnormal score Sa(t) 

from 1. 

 

Figure 4.15: Regularity score and Abnormality score calculation 
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The selected model code is attached to Appendix IV, the code can be noted that it has 15 

layers and a total of 1,958,209 trainable parameters. This was the structure of the model 

before enhancement. 

4.3 Data Preprocessing 

The Chong and Tay [50] autoencoder model were selected for improvement.  This model 

uses frames of size 256x256 for training. Therefore, the first step of data preparation is 

the extraction of frames from the videos and splitting of normal videos as the training set 

and abnormal videos as the testing set. Opencv library is utilized to extract the frames 

from the videos.  

 

Figure 4.16: Frame extraction code for video data preparation 
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Figure 4.16 shows the process of frame extraction and saving of frames within a structured 

directory to preserve the frames of a video in one directory. The full code for the whole 

extraction process is attached to Appendix II. 

 

Figure 4.17: Frames Extraction process 

Figure 4.17 portrays the frame extraction process from the videos. It shows the output of 

several videos in the UCF Crime dataset. Other ways to improve the data for effective 

model training and accuracy improvement included data augmentation. This process 

increases the amount of data by applying transformations like reflection, rotation and 

zooming in to expose the model to all angles of the image. It makes the dataset richer and 

more realistic. 

Data augmentation is the process of increasing the size and variety of data [38]. Existing 

data is transformed through some modifications. Data augmentation is useful when there 

is a shortage of data and variety. This process has been found to reduce overfitting. In the 

study, the geometrical transformation was used to perform data augmentation. The 
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geometrical transformation includes random flip, cropping, rotation, and transformation.  

The Keras ImageDatagenerator class was used for the augmentation tasks.  

The sliding window technique was applied to increase the size of the training dataset. 

Frames were concatenated through strides to acquire a rich dataset. For instance, a stride 

could concatenate the even frames while the other one concatenated the odd frames. The 

sliding window technique has been illustrated in Appendix II. 

4.4 Model Enhancement 

The model improvement process was conducted as a 3-tier process by applying 3 different 

treatments to increase model accuracy, reduce overfitting, and reduction of human 

supervision. The improvements that were done include, the introduction of Max-pooling, 

the addition of model depth and the addition of a classifier layer. 

4.4.1 Max-Pooling Treatment 

The pooling operation is the process of sliding a filter(kernel) across each channel of the 

feature map to summarize the features lying within the area covered by the filter. Pooling 

can be considered as part of the convolutional layer building block. The max-pooling 

reduces the size of the spatial representation since it reduces the number of parameters 

and computations in the network. 
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Figure 4.18: High-level illustration of Max-pooling operation 

Figure 4.18 illustrates how a max-pooling operation works by taking the maximum value 

in its filter. The max-pooling operation generates a single value from each filter. The value 

can be denoted as Zf = max {S} = max {s1, s2, s3…….sn}. The pooling operation aggregates 

together the output of each, and it compacts the output of a layer to a vector. Max-pooling 

has been found to increase the overall performance of the model by up to 2% [83]. 

The MaxPooling2D was used due to the nature of the Convolutional Network used in the 

Spatial encoding and decoding, which was Conv2D. Since the spatial parts were wrapped 

in TimeDistributed functions to preserve the movements of objects, pooling functions 

were also wrapped within the TimeDistributed functions. The encoding part of the 

autoencoder was fitted with the MaxPooling2D while the decoder part was fitted with the 

UpSampling2D which reverses the max-pooling effect for the spatial reconstruction. 

The Spatial Encoder before max-pooling treatment had only the convolutional layer and 

layer normalization.  

 

Figure 4.19: Spatial encoder, before the introduction of max pooling 

Figure 4.19 shows the encoding part of the model. It shows that the partial encoding which 

is consisted of the convolution 2d layers. This part provides the extraction of the 
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appearance and texture features. Features extraction was guided by the spatial encoders 

that extracted spatial features from the video frames. The encoding part draws the 256 by 

256 features from every image, then it scales it down to 32 by 32 features. In some way 

this was dimension reduction. 

The encoder part after the addition of a max-pooling layer 

 

Figure 4.20 shows the outcome of the encoding part after the max-pooling function was 

introduced. Note the addition of the Maxpooling2D function wrapped within 

TimeDistributed function. The pool size varies according to the scaling of the convolution 

sizes. 

UpSampling2D is the deconvolutional layer pooling function that reverses the Max-

pooling operation in the spatial decoder. The work of the decoder part of the autoencoder 

is to reverse the operations of the encoder part. Therefore, Up Sampling increases the 

output dimensions, unlike the max-pooling that reduces it. They extend the range of the 

next kernel by adding the size of the vector. 

Figure 4.21 shows the Spatial Decoder before the introduction of the un-pooling operation 

Figure 4.20: New encoder after addition of max-pooling2d  
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Figure 4.21: Spatial Decoder before unpooling was introduced 

UpSampling2D functions were added by researcher as part of the improvement, these 

operations were wrapped in the TimeDistributed function to preserve the motion features. 

See figure 4.22 below. 

 

Figure 4.22: Spatial Decoder after the introduction of UpSampling2D 

Figure 4.22 depicts the new spatial decoder with Upsampling2D functions that reverse 

the effect of Maxpooling functions introduced in the encoding part. The size of the 

Upsampling matrix is dependent on the size of deconvolution layer. The introduction of 

the pooling operation to the model reduced overfitting and reduced the computation 

complexity which was expected to cut some of the anomaly prediction errors. It was 

observed that training time was cut slightly, and the model accuracy had some slight 

increment in accuracy. 
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4.4.2 Model Depth Tuning 

The idea behind deep learning is that a deeper network performs better. Therefore, state 

of art models has shown a design trend of stacking layers of the network to enhance model 

performance. Increasing the depth of the model was considered as part of the model 

enhancement process.  New layers were introduced in the model to increase learnable 

features. Additional new layers were built upon the previous improvement that added 

max-pooling operations.  

Figure 4.23 shows the addition of the new layers on the model encoding part. It portrays 

the 98th filter layer added between the 128 and 64 filter layers. 

 

Figure 4.23: Addition of the new layer with 98 filter size 

This adds a new convolution layer that extracts the spatial features. It can be seen in figure 

26 that the new layers increased the depth of the model. The features extracted include 

appearance, motion, and trajectory features. 

Figure 4.24 shows the new features added to the temporal section of the model. The use 

of 3 by 3 kernel sizes can be noted since they work better than the kernels with large 

kernels. 
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Several layers were added to the temporal section of the autoencoder to have more depth. 

From three layers to five layers the 48-filter size was introduced to ensure more detailing. 

 

Figure 4.24: Addition of temporal encoder-decoder depth 

An additional layer was introduced in the spatial decoder part of the model as well to have 

more depth mirroring the exact structure of the spatial encoder. The decoder part is made 

of deconvolutional layers that are used for reconstruction. Therefore, a filter of size 98 

was introduced to enhance feature reconstruction. Figure 4.25 shows the new decoder 

after the 98filter layer was introduced. The deconvolutional layer reverses the operation 

of the convolutional layer hence it is introduced in both parts. 

 

Figure 4.25: Addition of Spatial Decoder depth 
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The model depth increased the trainable parameters from 1,958,209 to 3,710,157. The 

increase of trainable parameters increased the ability of the model to learn more features 

from the data and identify objects.  

The training data was composed of 10 sequences derived from the frames of the normal 

videos. The frames were of the same size of 256x256, and they were fit to the model for 

the training process. The summary of the whole enhanced model after it was executed 

during the training process is illustrated in figure 4.26. 

 

Figure 4.26: Enhanced model summary 
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Figure 4.26 illustrates the structure of the improved model. The depth increment and 

introduction of regularization functions can be visible from the model summary. 

4.4.3 Enhanced Autoencoder Model Training 

The autoencoder models are trained by fitting the model with the same values of X and Y 

since the goal is to teach the model how to reconstruct the given input. Therefore, our 

training dataset of videos was used for training without any labels.  A little processing 

was done to ensure that the frames had the same size of 256x256, and the values of the 

channels were scaled down to values between 0 and 1. The frames were concatenated in 

the sliding window technique to acquire sequences of frames cut into bunches of 10. The 

model takes bunches of 10 frames and then the other frames are fitted progressively in all 

training epochs. Figure 4.27 shows the data scaling by scaling the images to values 

between 0 and 1. Scaling of inputs avoids exploding gradient problems. Hence it was 

applied. 

 

Figure 4.27: Training Dataset Preparation 



88 

 

Figure 4.27 takes in the .jpg image then it divides every pixel value with 256 to scale it 

down to a value range between 0 and 1. The function then returns an array of values that 

represent the image. 

The training data was fit to the autoencoder, to set its internal weights for the sequence 

reconstruction task as follows. Figure 4.28 shows the training of the enhanced model. 

 

Figure 4.28: Enhanced autoencoder training process 

Figure 4.28 portrays the model training process. The process involved 3 epochs to 

conserve the available RAM memory while each epoch contained 180 steps. The training 

process took around 4 to 6 hours when deployed on a CPU environment depending on the 

size of the dataset. 

The training of the model extracted features from the video frames. The features extracted 

included appearance, motion and trajectory features that define characters within the 

video. Extracted features were used by the model calculate the reconstruction errors 

dataset that is used to detect the anomalies within every frame. 
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4.4.4 Extraction of features and dimensionality reduction 

Video frames were processed within the autoencoder by extraction of features that 

described shapes, edges, and motion. Key features were drawn from the frames to form a 

vector representation of the video, referred as the latent space. Extraction of the features 

was guided by the spatial and temporal encoding parts of the model. An input image of 

size 256 x 256 are fed to the model. The first conv2d layer extracted 65,536 features per 

every pixel in that frame. 

The encoding part reduced the size of the video frames by scaling it down through 

convolutions of sizes 128, 98, 64 and 32. This process can be considered as reduction of 

dimensions. Consider a single frame that was reduced from 65,536 features to 1,024 

features that translated from size 256x256 to size 32 by 32. The reduced features were 

combined to a latent space that was used by the autoencoder to reconstruct videos.  

The logic of anomaly detection drew from the reconstruction error. The autoencoder was 

trained on normal videos. The trained model was tested with a video containing 

anomalies. Larger reconstruction error was realized in every frame that contained an 

anomaly. Reconstruction error within the frames guided the detection of anomalies per 

every frame. 

4.4.5 Introduction of One-class Support Vector Machine 

The existing model did not have a way of calculating the regularity threshold that 

determines whether a frame has an anomaly or not. To automatically identify the 

threshold, I introduced an unsupervised clustering tool. One class SVM trained on the 
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reconstruction error of the normal videos, allows the One-class Support Vector Machine 

to establish a threshold by identifying the reconstruction error that lies outside the normal 

class, hence identifying anomalies. One Class Classification entails training the model on 

the normal data and forecasting whether new data is normal or abnormal. 

One class classification technique is used for classification, where the normal is taken as 

the negative instance (class 0) while the abnormal/anomalies are taken as the positive 

instance (Class 1). This implies: 

Negative Instance: Normal assigned 0 

Positive Instance: Anomaly/Outlier assigned 1 

One Class SVM captures the density of the majority class, Normal Video Frames are the 

majority since the anomalies are rare. Anomalies are classified as outliers or extremes of 

the density function.  

Reconstruction errors were used to train the classifier, it was established that the One-

class SVM had to be trained on the normal video data only. Therefore, the normal videos 

were run through the enhanced autoencoder, and the reconstructed sequences were used 

to acquire the reconstruction error from the Euclidean distance. The reconstruction error 

of normal videos was used to train the one-class SVM model. For testing purposes, videos 

with anomalies were run through the enhanced autoencoder and the resultant data was 

used as a testing set. 
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4.4.5.1 One class SVM Training dataset 

The training dataset was derived from the reconstruction errors of the normal videos run 

through the autoencoders. The reconstruction error of each frame was accumulated in an 

array together with other videos to cover the normal videos within the dataset. 

 

Figure 4.29: One class SVM Training Data creation 

Figure 4.29 shows, the extraction of the regularity score datasets that were used to train 

the One-class SVM. Reconstruction cost/error was acquired by calculating the Euclidian 

distance between the original sequences and the reconstructed sequences of the normal 

videos. The function within Figure 4.29 returns the reconstruction cost data in 

all_recon_cost variable. 
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4.4.5.2 One class SVM Training 

After the test data was acquired, the next step was to train the One-class SVM classifier 

with the normal instance’s reconstruction cost. 

 

Figure 4.30: One-Class SVM training process 

Figure 4.30 depicts the training of the classifier. The classifier is trained using the fit () 

function that uses the reconstruction costs to train the OneClassSVM. 

4.4.5.3 One-Class SVM Test Dataset 

Abnormal videos were fed to the autoencoder through the model.predict() function to 

acquire the reconstructed sequences that were used to calculate the reconstruction error. 

This reconstruction error was used to test the One-Class SVM. 

The test dataset was used to test the ability of the One-Class SVM to detect anomalies at 

every frame by returning the class value, where there was an anomaly, it was expected to 

return 1, otherwise it returns 0. Figure 4.31 shows the testing and validation of the 

improved model. 
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Figure 4.31: Test Dataset Generation 

It points out how the regularity scores can be applied to pinpoint anomalies. Anomaly 

detection relied on the reconstruction error obtained from the calculation of the Euclidean 

distance between the pixels of the original frame and reconstructed frame. It had been 

noted by Chong and Tay [19], that the frames with anomalies have higher reconstruction 

error. The autoencoder model returned the reconstruction error that indicates anomalies. 

One class SVM expanded that logic by classifying the reconstruction score as either 

normal or abnormal. 
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4.5 Experiments  

This chapter expounds on the experiments that I conducted, how they were set up and the 

datasets used in the different test cases. A posttest control experimental setup 

methodology was followed. The accuracy was measured after the enhancement was done 

to a random selected videos within the datasets. The experiments were set up in Google 

cloud. Where the experiments involved model training, testing, and the validation of the 

enhanced model. 

4.5.1 Datasets 

The new enhanced model was trained on three of the most used anomaly detection video 

datasets: Avenue, UCSD Ped1 and Ped2. The training videos were composed of normal 

events only while the testing videos were composed of both normal and abnormal 

activities. The University of California San Diego (UCSD) Ped1 and Ped2 datasets were 

used for training and testing. UCSD Ped1 & Ped2 are composed of 70 videos with 34 as 

the training set and 36 as the testing set. The video's scenery is a group of people walking 

in a park. Anomalies included non-pedestrian entities like bikers, skaters, carts, 

wheelchairs, and people walking in the grass area [35]. 

The Avenue dataset contains 16 training and 21 testing video clips. A total of 30652 

frames are available in the dataset. These videos are captured on a campus street using a 

still camera. Strange actions like the running of persons and riding a bike in the walkway 

are the abnormal events presented. The dataset compilation and download code have been 

attached in Appendix I. 
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4.5.2 Model Parameters 

The aim of training the model was to reduce the reconstruction cost of the input data. The 

Adam optimizer was utilized to set the learning rate automatically according to the model 

weights update history. Mini batches of size 4 and 3 epochs were used for training the 

model until the reconstruction loss stopped decreasing. Rectified Linear Unit (ReLU) 

activation function was used due to its ability to work well with CNNs and work with 

floating-point values. 

4.6 Model Validation 

This section highlights the methods used to ensure that the model achieved the intended 

purpose. Evaluation methods were deployed to check the performance of the hybrid 

model. The internal working and the ability to predict the anomalies are measured by 

established evaluation metrics like the ROC curve and F1 score. Public validated datasets 

were used for validation of the enhanced model. 

4.6.1 Results of the Experiments 

The enhancement of the Autoencoder included the addition of max-pooling and an 

increase of the model depth which increased the trainable features from 1.95 million to 

around 3.8 million learnable parameters. To effectively monitor the effectiveness of this 

treatment, various experiments were run using different datasets and model accuracy was 

recorded. 
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The autoencoder was used to reconstruct the videos, which were then used to calculate 

the reconstruction cost/error. The reconstruction cost is scaled between 0 and 1. To get a 

regularity score which is used to indicate anomalies. Where a low regularity score is 

considered an anomaly scene and high regularity score is considered normal. 

The regularity score, and reconstruction cost graphs were plotted for every experiment 

run and the corresponding error rate and regularity score can be identified from the plots. 

The dataset's ground truths were used to calculate the accuracy of the model. 

The regularity score indicates the anomaly score of every frame of the video, with a low 

regularity score indicating frame irregularity, hence indicating anomaly. 

Below are sample outputs of the model before and after improvement: - 

Test Case 001  

 

 

 

 

 

 

Figure 4.32: A plot of the Case 001 video ground truth 

The ground truth is the actual values of anomalies and normal scenes per every frame, it 

indicates every anomaly present in the test video. 
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Before enhancement 

  

 

After enhancement 

 

Figure 4.34: Output after enhancement 

It can be noted that the graphs have some slight differences when compared with the 

before and after the model was improved. The improved model graphs have more smooth 

lines compared with the old model. This difference indicates the ability of the new 

improved model to deal with local minima and establish a clearer distinction between 

normal and abnormal scenes in the videos. Both Figures 4.33 and 4.34 show the 

comparison of the regularity score and mean squared error, before and after the model 

enhancement. 

  

Figure 4.33: Before model improvement 
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Test Case 002 

 

Figure 4.35: A plot of ground truth in test case 002 

Figure 4.35 shows a plot of the actual anomalies and normal scenes in the test video. This 

plot is the true values of anomalies per every frame. The ground truths are verified and 

published in the dataset. Ground truth is used to measure the accuracy of the model. 

Before enhancement 

 Figure 4.36 shows the 

plots of the reconstruction error, regularity score and the RoC Curve. This plot shows that 

the model performs poorly in this test case. Note the accuracy score. This scene is a bit 

complicated hence the model performs poorly. The reconstruction error plot on an ideal 

situation should be close to the ground truth plot in Figure 4.35   

Figure 4.36: Test Case 02: Before enhancement 
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After enhancement 

Figure 4.37 shows the outputs obtained in Test case 002 after the model was improved. 

Note the increase in the model accuracy and the smoothness of the curve. The model 

performs better after it was enhanced. It can predict well despite the scene complexity. 

Test Case 003 

A plot of ground truths 

 

Before enhancement 

Figure 4.37: Test Case 002: After enhancement output 

Figure 4.38: Test Case 003 Ground Truth Plot 

Figure 4.39: Test Case 003: before enhancement 
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Figure 4.39 shows the reconstruction error, regularity score and the ROC curve. The plot 

of the reconstruction error shows close resemblance to the ground truth although at the 

top region with anomalies it has some ramps indicating local minima. After the model 

was improved as shown in figure 4.40, the plots of reconstruction error and the regularity 

score smoothens with local minima being flattened. This shows the stability of the model 

in the prediction of anomalies. 

Test Case 003 After enhancement 

 

The low regularity score indicates the presence of anomalies as illustrated below in the 

Figure 4.41.  

Figure 4.40: Test Case 003 after the enhancement 
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Figure 4.41 illustrates the presence of anomalies in the test video. For instance, the 

anomaly plot shows that from the 50th to 150th frames there are anomalies present. A part 

of the frames in between is shown in figure 43. The present anomalies are the presence of 

non-pedestrian entities in the park. Anomalies have low regularity scores hence the 

depression in the regularity plot. From figure 4.41, it was established that model 

improvement addresses local minima by flattening them such that anomalies can be 

identified with ease. 

Figure 4.41: Illustration of Anomalies in the test case 003 video 
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4.6.2 Comparison of Models Accuracy 

Different datasets were used to assess the model and the test cases were run in every 

dataset and the RoC curve accuracy scores were averaged to have a single accuracy score 

that was compared to the old model. The accuracy scores were tabulated in the table below 

for comparison. The model was trained and evaluated on UCSD Ped1 and Ped2 public 

validated datasets. 

Table 4.3: Comparison of the RoC-AUC Scores 

Model 

UCSD Ped1 UCSD Ped2 Average 

Old Autoencoder 

Model [50] 

86.14 90.23 84.86 

Enhanced 

Autoencoder Model 

92.63 95.56 94.10 

 

Table 4.3 shows evidence of improvement in the average percentage accuracy of the test 

cases per dataset. Notably, the accuracy has been increased by some percentage, due to 

the improvements made to the model structure. From the average column, we can note 

that the model accuracy increased by 9.2%. This increase reduces the errors in the 

anomaly prediction. This contribution reduces false alarm errors and increases anomalies 

detected during prediction of anomalies. 
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4.6.3 Test of statistical significance 

It is important to evaluate whether the improvements made to the model caused the 

increase in model accuracy. This test establishes whether the enhancements were 

significant. The accuracy score is not normally distributed and hence a distribution-free 

method was used. Sign test method was selected to test for the statistical significance of 

the improvement. This method does not assume that data is normally distributed, but it 

treats the data as binomial distribution. The test of significance was conducted at different 

alpha levels and the following hypothesis was formulated. 

Formulated hypothesis 

Null Hypothesis 

H0 - No significant accuracy improvement in the enhanced STAE model after depth and 

pooling tuning. 

Research Hypothesis 

H1- There is significant accuracy improvement in the enhanced STAE model after depth 

and pooling tuning. 

The accuracy scores from different datasets were recorded before and after the model was 

enhanced and were used to test the significance of the improvement using the sign test 

method as follows: 
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Figure 4.42: Sample data used for test of significance 

Figure 4.42 displays, the test cases conducted, that were used to test for the significance 

of the enhancement. The test cases are the total number of tests conducted from the UCSD 

Ped1 and Ped 2 test datasets after the test experiments were conducted. These test cases 

were randomly sampled from the 36 available test subjects at 95% confidence level and 

a margin error of 10%. 

The test statistic for the sign test is the number of positive or negative signs. In this case, 

we observe 16 positive and 2 negative signs. Zeros are not considered as they do not 

indicate any significant improvement. 
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Test statistic for the Sign test is the least number of either positive or negative signs 

[84]and it follows binomial distribution with the probability of P = 0.5 and n as the number 

of subjects in the study.  

Two-tailed test was used since improvement of the model had both negative and positive 

effects to the model prediction accuracy [84].  Two-sided test hypothesizes a repetitive 

behavior like the prediction accuracy before and after the model improvement. 

P values were calculated from the binomial distribution formula below: - 

𝑃(𝑥 𝑠𝑢𝑐𝑐𝑒𝑠𝑠) =
𝑛!

𝑥! (𝑛 − 𝑥)!
 𝑝𝑥(1 − 𝑝)𝑛−𝑥 

Since the number of positive is not equal to the negative sign, we proceed to calculate the 

p-value, 

 A two-tailed test with a Significance level of 0.05 and, 

 Sample size n=18[excluding 0], number of successes=2 since the positive outcomes are 

16. 

When calculating the p-value, 

It was assumed that the data follows a binomial distribution, which has a probability of 

0.5 such that; Null hypothesis is that there is an equal number of signs (+) and (-). 



106 

 

An assumption of the null hypothesis is made to set up a binomial experiment with 0.5 as 

probability, 18 as the number of trials and 2 as the success since success is taken as the 

least positive or negative sign. 

At the significance level α=0.05 

The P-value is 0.000583 and since it is less than the significance level of 0.05, the null 

hypothesis was rejected. 

At the significance level α=0.01 

The calculated P-Value is 0.000583 and it is still less than the significance level of 0.01, 

the null hypothesis was rejected. 

Therefore, the conclusion was made that, there was evidence of improvement in model 

accuracy after it was enhanced. 

4.7 Summary 

This chapter captured the implementation of the study objectives, the results obtained and 

the interpretation of the results. Deep learning models were reviewed by conducting 

analysis and a model was selected for improvement. The model was enhanced through 

the increase of the model depth, regularization, and introduction of the clustering 

algorithm. Depth of the spatial temporal autoencoder was added from 15 layers to 29 

layers. The accuracy of the enhanced model was noted to increase significantly by 

increase from average of 84.8% to 94.1%. The model accuracy was compared and 

validated to establish the significance of the improvement.  
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CHAPTER FIVE 

SUMMARY, CONCLUSION AND RECOMMENDATIONS 

5.1 Summary 

This chapter concludes the Thesis, by highlighting the research landmarks and the 

delivered enhanced deep learning model by shedding light on important highlights. The 

chapter entails how the model was improved, and the new improved model. The process 

of model selection, model debugging, and model improvement contributes to autoencoder 

development and intelligent surveillance. 

The first part of the thesis analysis the deep learning models implemented for surveillance 

videos anomaly detection. Several categories of the models are discovered in the review, 

and current and emerging trends were also discovered. The implemented models were 

grouped into several categories namely: transfer learning, autoencoders, ensemble 

learning and continual learning.  

The research study was driven by the need to improve and refine anomaly detection in 

surveillance videos. This work was focused on the reduction of errors in anomaly 

detection as identified in the research gap. It can be noted that the model was enhanced 

by adding its depth, introducing of max-pooling function, and adding an automatic 

classifier. The new enhanced model extracted more features from the videos after 

enhancement. Extraction of more features made it possible for the model to reduce scene 

complexity and make more accurate anomaly predictions. Hence, the overall increase in 

the model accuracy. The enhanced model can be seen in appendix v. 
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The last step was to validate the improvement. The enhanced model was trained and tested 

using the UCSD Ped1 and Ped2 datasets.  Anomaly prediction accuracy of the old and the 

new enhanced models were compared, and significant improvement was noted. 

5.2  Conclusion 

The enhanced model achieves a significant increase in anomaly prediction accuracy; 

hence it minimizes the error rate. This study established that the depth of autoencoder 

models while working in video anomaly detection matters. The spatial parts of the 

autoencoder model were made deeper to extract appearance, texture, and position features 

from the imagery data. The depth tuning included addition of regularization layers as well.  

Application of regularization parameters, reduced the overfitting in the autoencoders, 

hence fostering model generation capability. 

The new enhanced model is deeper with a total of 29 layers compared with the old model 

which had 15 layers. This model has more trainable parameters with a total of 3,710,157 

parameters compared to the old model with 1,958,209 learnable parameters. 

5.3 Recommendations 

Some of notable recommendations noted within the research can help in shaping the 

quality of research and the future of intelligence surveillance. 

5.3.1 Recommendations to Policy 

Other researchers with interest in this area and industries seeking to push further 

intelligence surveillance should consider video reconstruction error while exploring the 
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unsupervised anomaly detection.  In addition, progressive training should be built on the 

autoencoder model to allow room for the new data. The problem of novel anomalies can 

be a future consideration by incorporating continual learning. 

Use of Graphics Processing Units (GPUs) as the default computing engine is 

recommended. GPUs are more efficient while dealing with complex data like videos. 

5.3.2 Recommendations for Future Works 

In future, more work should be done on real-time anomaly detection and diversification 

of anomaly detection in satellite surveillance, traffic surveillance and other areas can be 

considered. Real-time anomaly detection and continually learning models will be a closer 

step towards deployable intelligent surveillance. 
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APPENDIX I: 

 DATASET COMPILATION CODE 

 

The above code section portrays the collection of the datasets from the public libraries of 

validated datasets. Data were downloaded and stored in the cloud for easy access. 
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APPENDIX II: 

VIDEO FRAMES EXTRACTION CODE 

from concurrent.futures import ProcessPoolExecutor, as_comp

leted 

import cv2 

import multiprocessing 

import os 

import sys 

import os 

from os import listdir 

import skimage.transform 

from skimage import color 

from os.path import isfile, join 

import numpy as np 

import numpy 

from datetime import datetime 

from pathlib import Path 

from os.path import basename 

import glob 

from random import sample 

 

videopath='/content/drive/My Drive/datasets/ucf_crime/Anoma

ly-Videos/RoadAccidents' 

framespath='/content/drive/My Drive/datasets/ucf_crime/test

ing_anomaly_videos/' 

 

def print_progress(iteration, total, prefix='', suffix='', 

decimals=3, bar_length=100): 

    """ 

    Call in a loop to create standard out progress bar 

     

    """ 

 

    format_str = "{0:." + str(decimals) + "f}"  # format th

e % done number string 

    if total==0: 

      total=1 

    percents = format_str.format(100 * (iteration / float(t

otal)))  # calculate the % done 

    filled_length = int(round(bar_length * iteration / floa

t(total)))  # calculate the filled bar length 

    bar = '#' * filled_length + '-

' * (bar_length - filled_length)  # generate the bar string 
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    sys.stdout.write('\r%s |%s| %s%s %s' % (prefix, bar, pe

rcents, '%', suffix)),  # write out the bar 

    sys.stdout.flush()  # flush to stdout 

 

def extract_frames(video_path, frames_dir, overwrite=False,

 start=-1, end=-1, every=1): 

    """ 

    Extract frames from a video using OpenCVs VideoCapture 

    :param video_path: path of the video 

    :param frames_dir: the directory to save the frames 

    :param overwrite: to overwrite frames that already exis

t? 

    :param start: start frame 

    :param end: end frame 

    :param every: frame spacing 

    :return: count of images saved 

    """ 

 

    video_path = os.path.normpath(video_path)  # make the p

aths OS (Windows) compatible 

    frames_dir = os.path.normpath(frames_dir)  # make the p

aths OS (Windows) compatible 

 

    video_dir, video_filename = os.path.split(video_path)  

# get the video path and filename from the path 

 

    assert os.path.exists(video_path)  # assert the video f

ile exists 

 

    capture = cv2.VideoCapture(video_path)  # open the vide

o using OpenCV 

 

    if start < 0:  # if start isn't specified lets assume 0 

        start = 0 

    if end < 0:  # if end isn't specified assume the end of

 the video 

        end = int(capture.get(cv2.CAP_PROP_FRAME_COUNT)) 

 

    capture.set(1, start)  # set the starting frame of the 

capture 

    frame = start  # keep track of which frame we are up to

, starting from start 

    while_safety = 0  # a safety counter to ensure we don't

 enter an infinite while loop (hopefully we won't need it) 
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    saved_count = 0  # a count of how many frames we have s

aved 

 

    while frame < end:  # lets loop through the frames unti

l the end 

 

        _, image = capture.read()  # read an image from the

 capture 

 

        if while_safety > 500:  # break the while if our sa

fety maxs out at 500 

            break 

 

        # sometimes OpenCV reads None's during a video, in 

which case we want to just skip 

        if image is None:  # if we get a bad return flag or

 the image we read is None, lets not save 

            while_safety += 1  # add 1 to our while safety,

 since we skip before incrementing our frame variable 

            continue  # skip 

 

        if frame % every == 0:  # if this is a frame we wan

t to write out based on the 'every' argument 

            while_safety = 0  # reset the safety count 

            save_path = os.path.join(frames_dir, video_file

name, "{:010d}.jpg".format(frame))  # create the save path 

            if not os.path.exists(save_path) or overwrite: 

 # if it doesn't exist or we want to overwrite anyways 

                image=cv2.resize(image,(256,256)) 

                image=cv2.cvtColor(image, cv2.COLOR_BGR2GRA

Y) 

                cv2.imwrite(save_path, image)  # save the e

xtracted image 

                saved_count += 1  # increment our counter b

y one 

 

        frame += 1  # increment our frame count 

 

    capture.release()  # after the while has finished close

 the capture 

 

    return saved_count  # and return the count of the image

s we saved 
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def video_to_frames(video_path, frames_dir, overwrite=False

, every=1, chunk_size=1000): 

    """ 

    Extracts the frames from a video using multiprocessing 

    """ 

 

    video_path = os.path.normpath(video_path)  # make the p

aths OS (Windows) compatible 

    frames_dir = os.path.normpath(frames_dir)  # make the p

aths OS (Windows) compatible 

 

    video_dir, video_filename = os.path.split(video_path)  

# get the video path and filename from the path 

 

    # make directory to save frames, its a sub dir in the f

rames_dir with the video name 

    os.makedirs(os.path.join(frames_dir, video_filename), e

xist_ok=True) 

 

    print(video_filename) 

 

    capture = cv2.VideoCapture(video_path)  # load the vide

o 

    total = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))  # g

et its total frame count 

    capture.release()  # release the capture straight away 

 

    if total < 1:  # if video has no frames, might be and o

pencv error 

        print("Video has no frames. Check your OpenCV + ffm

peg installation") 

        return None  # return None 

 

    frame_chunks = [[i, i+chunk_size] for i in range(0, tot

al, chunk_size)]  # split the frames into chunk lists 

    frame_chunks[-1][-1] = min(frame_chunks[-1][-1], total-

1)  # make sure last chunk has correct end frame, also hand

les case chunk_size < total 

 

    prefix_str = "Extracting frames from {}".format(video_f

ilename)  # a prefix string to be printed in progress bar 

 

    # execute across multiple cpu cores to speed up process

ing, get the count automatically 



132 

 

    with ProcessPoolExecutor(max_workers=multiprocessing.cp

u_count()) as executor: 

        futures = [executor.submit(extract_frames, video_pa

th, frames_dir, overwrite, f[0], f[1], every) 

                   for f in frame_chunks]  # submit the pro

cesses: extract_frames(...) 

 

        for i, f in enumerate(as_completed(futures)):  # as

 each process completes 

            print_progress(i, len(frame_chunks)-

1, prefix=prefix_str, suffix='Complete')  # print it's prog

ress 

 

    return os.path.join(frames_dir, video_filename)  # when

 done return the directory containing the frames 

 

def listdir_nohidden(AllVideos_Path):  # To ignore hidden f

iles 

        file_dir_extension = os.path.join(AllVideos_Path, '

*.mp4') 

        print(file_dir_extension) 

        for f in glob.glob(file_dir_extension): 

            if not f.startswith('.'): 

                yield os.path.basename(f) 

if __name__ == '__main__': 

    # test it 

    AllVideos_Path = videopath 

    All_Videos=sorted(listdir_nohidden(AllVideos_Path)) 

    print(*All_Videos) 

    All_Videos.sort() 

    for iv in range(len(All_Videos)): 

        VideofilePath = os.path.join(AllVideos_Path, All_Vi

deos[iv]) 

        video_to_frames(video_path=VideofilePath, frames_di

r=framespath, overwrite=True, every=5, chunk_size=1000) 

The above code was used to extract frames from the videos. A video file is loaded from 

the dataset, then frames are extracted at 24 frames per second, and they are saved in a 

directory in the name of the video. It was applied in the data preparation process. 
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APPENDIX III:  

DATA AUGMENTATION CODE 

During the model development process, the sliding window technique was applied to link 

the frames and make sure more image sequences were generated bypassing the window 

in a sequence on the extracted frames. 

Def get_clips_by_stride(stride, frames_list, sequence_size): 

    """ For data augmenting purposes. 

    Parameters 

    ---------- 

    stride : int 

        The desired distance between two consecutive frames 

    frames_list : list 

        A list of sorted frames of shape 256 X 256 

    sequence_size: int 

        The size of the desired LSTM sequence 

    Returns 

    ------- 

    list 

        A list of clips , 10 frames each 

    """ 

    clips = [] 

    sz = len(frames_list) 

    clip = np.zeros(shape=(sequence_size, 256, 256, 1)) 

    cnt = 0 

    for start in range(0, stride): 

        for i in range(start, sz, stride): 

            clip[cnt, :, :, 0] = frames_list[i] 

            cnt = cnt + 1 

            if cnt == sequence_size: 

                clips.append(np.copy(clip)) 

                cnt = 0 

    return clips 
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APPENDIX IV: 

 SELECTED STAE MODEL 

 

Figure above is the actual model that was selected for improvement. This the model before 

it was enhanced. It is important to note its structure before additional of more layers and 

addition of regularization functions.   
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APPENDIX V: 

ENHANCED STAE MODEL 

 

Figure above illustrates the enhanced model structure after an increase of the model depth 

and introduction of pooling functions in the spatial parts of the encoder and decoder. More 

layers can be noted from a comparison of the old model. 
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APPENDIX VI: 

ILLUSTRATION OF THE ENHANCED STAE MODEL  

 

The figure above is a graphical illustration of the enhanced model structure. It shows the 

size of different layers and transitioning between layers using pooling and un-pooling 

function. There were notable changes in the spatial and temporal parts of the autoencoder 

after improvement since their depth was increased. 
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PUBLICATION 

The following publication was published from this work. 

Munyua, J.G., Wambugu, G.M., & Njenga, S.T. (2021). A Survey of Deep Learning 

Solutions for Anomaly Detection in Surveillance Videos. International Journal of 

Computer and Information Technology (2279-0764). 

https://www.ijcit.com/index.php/ijcit/article/view/166 


