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1. ABSTRACT 

Automated diagnosis of disease from medical images using machine learning has been 

in rise in the recent past. One such case is the classification of diabetic retinopathy 

from fundus images. Diabetic Retinopathy is an eye disease that is a result of diabetes 

mellitus and it is major cause of blindness among people of the working age. Diabetic 

retinopathy has five main classes namely: No DR, Mild DR, Moderate DR, Severe 

DR, and Proliferative DR. Deep learning has been used previously in this field and it 

has proved to be better than conventional machine learning approaches. However, 

deep learning involves training a model from scratch thus making it to be data hungry, 

require high training cost, have poor generalizability, and they don’t deliver high 

performance. Meta-learning also known as learning-to-learn is a field of machine 

learning which aims at improving deep learning by enabling models to improve their 

performance capabilities and reduce training cost. Meta-learning techniques include 

multi-task learning, transfer learning, self-optimization, and few-shot learning. 

Several transfer learning architectures pre-trained on the ImageNet dataset have been 

used by different researchers and they have demonstrated superior performance over 

deep learning. However, domain-shift generalizability and optimal performance of 

pre-trained architectures are major challenges facing transfer learning. This so because 

these models are not properly tuned for cross-domain optimality. The aim of this study 

was to develop an improved model for classification of diabetic retinopathy into its 

five classes. To achieve this, the researcher used the following approach: A VGG16 

network pre-trained in ImageNet was modified such that the top-layer was rebuilt and 

an attention model was added. Two-level optimization was used during training in 

which the model was allowed to self-tune its learning rate based on the training 

parameters. The EyePACS dataset obtained from Kaggle repository was used in 

training, validating, and testing the model. The model was developed in Google 

Collaboratory platform using python programming language, TensorFlow, and Keras. 

The study achieved the following results: Accuracy 89.06%, Precision 88.9%, Recall 

89.2%, F1-Score 75%, Quadratic Cohen Kappa Metric 0.84, Area Under the Curve 

(AUC) 93.3%. The results of the study demonstrated improved performance compared 

to other existing models in literature such as Qummar et al (2019), Jinfeng et al (2020), 

Chilukoti et al (2022), that classify diabetic retinopathy into five classes. The study 

concluded that leveraging on previously acquired knowledge and efficient 

optimization of neural networks using data driven self-optimization delivers better 

performance than conventional machine learning and deep learning. In future 

researchers can consider using reinforcement learning and transfer learning in 

classification of diabetic retinopathy.  
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6. DEFINITION OF TERMS  

Diabetic Retinopathy: Diabetic retinopathy (DR) is an eye disease that is a result of 

diabetes mellitus. It is characterized with damaged blood vessels in the retina, swollen 

or leaking vessels, some close thus stopping blood from passing through them, and 

abnormal vessels can grow in the retina.   

Domain-shift Generalizability: Refers to the model’s ability to adapt properly to a 

new but related task which belongs to a different domain from which the model was 

pre-trained on.   

Generalizability: the model's ability to adapt properly to new, previously unseen data, 

drawn from same distribution as the one used to create the model.  

Meta-Learning (learning-to-learn): it is a field of Artificial intelligence that aims at 

improving the conventional deep learning approaches by providing a collection of 

techniques that facilitate a model to learn from multiple tasks, leverage on previously 

acquired knowledge, and perform self-optimization. 

Multi-task Learning: This refers to a learning approach that aims at using shared 

knowledge among tasks to jointly learn from the multiple tasks. It also involves 

leveraging on the knowledge acquired from these multiple tasks to improve a model’s 

performance on an individual task.  

Transfer Learning: Transfer learning is part of meta-learning that focuses on 

transferring knowledge that is learned from a task A to a new related task B. 
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1. CHAPTER ONE 

INTRODUCTION 

1.1 Background of the Study  

Machine learning is one of the technologies that has been highly applied in solving 

some of the world’s major challenges. One of the areas in which machine learning has 

been widely applied is in healthcare [1]. Machine learning is a subset of Artificial 

Intelligence that provides systems with the ability to learn without being explicitly 

programmed [2]. Therefore, once machine learning models are provided with training 

data, they can be able to learn from the data and make decisions based on what the 

models have learned. This is unlike traditional programming which is rule-based and 

programs act as per the conventions of the rules. 

Machine learning is categorized into four main branches which according to [2] are: 

first, supervised learning, this uses labeled data to train and test the machine learning 

algorithm. Second, unsupervised learning, this involves training and testing machine 

learning models with unlabeled data. Third, reinforcement learning, this one uses a 

reward system in which the model learns as it goes by using trial and error. A series 

of successful outcomes are reinforced to come up with the final model. Fourth, semi 

supervised learning, this is a learning problem that involves a large number of 

unlabeled examples and a small number of labeled examples [2].  

Machine learning can be used to perform different sets of activities which include the 

following: First, regression which is a supervised learning task which focuses on 

predicting the value of label based on a set of features[3]. The dependency of a label 

on the training data in regression is determined by how the label will change as the 

value of the features are varied. Regression can be used in tasks such as predicting the 

price of commodities in future.  Second, clustering which is an unsupervised learning 
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task which groups instances of data into clusters that contain similar characteristics[4]. 

Clustering can be used in tasks such as market segmentation.   

Third classification which is a supervised learning task which is used to determine a 

class or category that an instance belongs to. Classification can be grouped into either 

multi-class classification or binary classification. Binary classification involves 

predicting which of two categories an instance belongs to[5]. Therefore, it only 

classifies instances into two categories only. A sample application of binary 

classification is detecting if a patient is +ve for certain ailment or not. Multi-class 

classification is an advancement of binary classification that involves classifying 

instances into more than one classes. Multi-class classification therefore enables data 

analyst to classify data into different dimensions[6]. For instance, it can be used to 

detect if a patient has a certain illness or not and then if the patient has the illness it 

further classifies the illness into different stages of the illness[6].  

The medical field has been a major area in which machine learning researchers have 

developed solutions for. Deep learning which involves use of neural networks has 

especially proofed to be superior in medical imaging task. This involves diagnosing 

and classifying medical conditions from medical images. Some of the deep learning 

solutions that have been developed include: Brain tumor detection[7], cancer detection 

from medical images[8], diabetic retinopathy detection[9], and CT-scan images 

analysis to determine extent of damage[10]. 

 Developing deep learning models involves the following series of steps: First, 

choosing the dataset to use. Second, performing data preprocessing. Third, divide the 

dataset into training, validation, and testing sets. Fourth, model training using the 

training dataset. Fifth, validating the model. Sixth, testing and evaluating the model 
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[11] [12]. The above-described approach also known as the conventional approach has 

three main problems that make it perform poorly. 

 First, it requires a lot of training data to be available to learn effectively. Where large 

volumes of training data are not available the models trained using the conventional 

approach performs poorly. Secondly, the choice of hyper-parameters also affects how 

the model’s performance. Poor choice of hyperparameters results in poor performance 

[13] [14]. Third, conventional approaches such as deep learning require high 

computational power thus limiting scalability of conventional models. Fourth, the 

conventional approaches lack the capabilities to learn from different tasks and transfer 

the acquired knowledge to solving a new task[13].   

To address these problems, the concept of Meta-learning was introduced. Meta-

learning is also known as learning-to-learn. It is a field of machine learning that aims 

at improving the conventional deep learning approaches where tasks are performed 

from scratch using a fixed learning algorithm[13]. Meta-learning focuses on 

improving the algorithm itself so that the model can achieve optimal performance with 

limited resources compared to other machine learning approaches. This provides an 

avenue of solving the key machine learning challenges which include need for large 

volumes of data, performance, generalization, and computational bottlenecks [14].  

Meta-learning has the following variants; First, multi-tasking learning, which deals 

with training the algorithm with multiple sets of training data. Second, transfer 

learning which involves transferring the knowledge obtained from multitask learning 

into solving a new task. Third, Hyper-parameter optimization, this deals with 

obtaining the optimal hyperparameters of an algorithm. Fourth, learning to learn 

collectively which includes bagging, boosting, and stacked generalization [13][14] 
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[15][16]. Scholars, such as[13] have demonstrated that by using Meta-Learning 

techniques, a state-of-the-art performance of the algorithm is achieved.  

Transfer learning has attracted many researchers such as [17] [18],due to its 

capabilities of enabling a model to leverage on previous knowledge. Transfer learning 

transfers knowledge acquired from multitask learning in form of weights to solving 

new tasks. For transfer learning to be successful there is need for optimal 

hyperparameter tuning so that the model can easily achieve good performance with 

minimal training effort[19]. This brings value to fields such as Diabetic retinopathy 

classification where high performance is a necessity yet huge volumes of training data 

are not available. 

Diabetic retinopathy (DR) is an eye disease that is a result of diabetes. It is 

characterized with damaged blood vessels in the retina, swollen or leaking vessels, 

some close thus stopping blood from passing through them, and abnormal vessels can 

grow in the retina. Eventually these changes can result to lose of vision [20]. DR has 

five categories namely: No DR, Mild DR, Moderate DR, Severe DR, and Proliferative 

DR[21]. Deep learning has been used by other researchers such as [22] for 

classification of diabetic retinopathy. Deep learning models registered low 

performance due to learning from scratch. Transfer learning models have proofed 

superiority over deep learning as demonstrated by [18][17][23]. However, the existing 

transfer learning models have not achieved domain-shift generalizability due to lack 

of optimal tuning of hyperparameters to achieve optimal performance of the models. 

In Africa, a study conducted in Zambia’s copper belt province revealed that out of the 

2689 participants, 52% showed evidence of Diabetic retinopathy. Among these 

positive patients, 36% had sight threatening diabetic retinopathy while 7% had 
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proliferative diabetic retinopathy[24]. Another study was conducted in Sudan by [25]. 

The aim was to determine the prevalence of diabetic retinopathy among people with 

diabetes. Out of 316 participants screened 261 (82.6%) had diabetic retinopathy. Of 

the 82.6% 39.9% had proliferative diabetic retinopathy[25].  A study conducted in 

Nakuru county, Kenya by [26] reported that the estimated prevalence of diabetic 

retinopathy among people with diabetes mellitus is 224.7 persons for every 1000 

persons. The study also estimated the prevalence of Diabetic retinopathy among 

people without diabetes mellitus is 15.8 per 1000  persons[26].  

1.2 Problem Statement  

Transfer learning is part of meta-learning that deals with transferring knowledge 

acquired from multitask learning into solving a new task[13][19]. Transfer learning 

has been applied in various image processing tasks with one of them being 

classification of diabetic retinopathy[17][18][19]. Ideally, a model based on transfer 

learning should be able to leverage on previously acquired knowledge into solving the 

task of classification of diabetic retinopathy with minimal training overheads and 

achieve good performance.  

However, this is not the case since domain shift generalizability and optimal 

performance of pre-trained architectures are major challenges facing transfer learning. 

This so because existing transfer learning models for detection of diabetic retinopathy 

such as [17][18][19] are not efficiently tuned for cross-domain optimality.   

 Also, performance of existing diabetic retinopathy detection models such as 

[17][18][19] [27] & [28] are challenged in self-optimization, increased training 

overhead due to many trainable parameters and failure to consider all classes of 

diabetic retinopathy. Therefore, there is need to develop a model that utilizes data 
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driven self-optimization to achieve domain-shift generalizability and improved 

performance. 

1.3 Objectives  

1.3.1 General Objective 

The general objective of this study was to develop an improved diabetic retinopathy 

classification model using transfer learning approach and hyperparameter 

optimization.  

1.3.2 Specific Objectives 

i. To analyze current deep learning and transfer-learning models used for 

classification of diabetic retinopathy with the aim of selecting the best 

architecture. 

ii. To redesign selected model architecture and tune training hyperparameters 

with the aim of improving performance.  

iii. To validate and test the improved model.  

1.4 Research Questions  

i. What are the existing transfer learning and deep learning models that have 

been used for classification of diabetic retinopathy? 

ii. How can the model architecture be redesigned and training 

hyperparameters tuned to improve performance?  

iii. How can the improved model be validated and tested? 

1.5 Significance of the study  

This study is important because it brings on board a new model that improves on the 

automatic classification of diabetic retinopathy by utilizing two levels of optimization 

to optimize the model hyperparameters. The findings of the study show that the model 
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delivers more reliable performance compared to other models in related works. This 

improvement reduces chances of misdiagnosis and misclassification. The high 

specificity achieved by the model compared to others in literature is a clear indication 

that the model has very high capabilities of ensuring that majority of the positive 

patients will be identified as such.  The new model is also better than the existing ones 

since it has better domain generalizability. Therefore, in case there is need for the 

model to be used for detecting other Eye complications associated with diabetic 

retinopathy, the model will require only minimal training to achieve high performance.   

1.6 Scope of the study  

The research is domiciled in the field machine learning, subfield of meta-learning. The 

study is confined within transfer learning as one of the major approaches of meta-

learning. The first objective focused on analyzing the existing works and choosing a 

suitable architecture that can be used for transfer learning. The second objective was 

confined on redesigning the chosen architecture and tuning its training 

hyperparameters to improve performance. The aim of the model was to achieve 

superior performance in classification of Diabetic retinopathy compared to existing 

models in literature.  

The third objective was confined on validating the model using simulation. The 

researcher opted to use simulation in validation due to the following reasons: First, 

validation using simulation is the standard practice in machine learning since other 

researchers such as [9][17][18][23] have used the same approach. Second, validation 

by simulation is less costly compared to others such as engaging experts. It also 

focused on evaluating the model’s performance using Precision, Recall, Quadratic 

Weighted Kappa Metric, Accuracy, F1-score, and Area Under the Curve as the 

Evaluation Metrics.   
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1.7 Limitations of the Study  

The researcher faced the challenge of acquiring a balanced labeled dataset with all the 

five classes of diabetic retinopathy. The dataset that was obtained which is the 

EyePACS dataset was quite imbalanced. Therefore, the dataset if used without 

modification would have skewed learning towards the majority class. To overcome 

this challenge, the researcher augmented the minority classes using TensorFlow 

library and reduced the data imbalance gap.  

1.8 Contributions of the Thesis  

The contributions made by this thesis are highlighted below: 

i. A new improved model was developed which achieves better performance 

compared to the existing models  

ii. Model optimization was done using two-level optimization thus allowing the 

model to autotune some of its hyperparameters based on the training data.  

iii. Domain-shift generalizability was achieved as evidenced by the model’s 

superior performance in the task as compared to existing models in literature.  

1.9 Organization of the Thesis  

This thesis is organized into five chapters as highlighted below;  

Chapter one discusses the background of the study, the problem statement, the 

research objectives, research questions, significance of the study, scope of the study, 

limitations of the study, conceptual framework, and the contributions of the thesis. 

Chapter Two consists of the literature review. The chapter discusses the field of study 

in details and analyzes the previous studies that had been done in this area. Chapter 

three discusses the methodology that the researchers used to achieve the objectives of 

the study. Chapter four consist of the results obtained from the study and their 
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discussion. Chapter five contains the conclusion, recommendations and future works. 

The references and the Appendices follow after chapter five.  
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2. CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction  

This chapter reviews the literature on previous works done by other researchers in this 

field. The aim of the chapter was to analyze what other scholars in the field have 

discovered.  

2.2 Diabetic Retinopathy 

 Diabetic retinopathy (DR) is an eye disease that is a result of diabetes mellitus and 

it’s a major cause of blindness among people who are of working-age[21]. It is most 

common microvascular complication and it is more prevalent among people with type 

I diabetes mellitus than those with type II diabetes mellitus[20].  It is characterized 

with damaged blood vessels in the retina, swollen or leaking vessels, some close thus 

stopping blood from passing through them, and abnormal vessels can grow in the 

retina[22]. Thus, eye fundus images are used to detect diabetic retinopathy and even 

determine the stage at which the complication is at[21].  

 Clinically diabetic retinopathy can be grouped into two classes namely; proliferative 

DR (PDR) and non-proliferative DR (NPDR). Excessive sugar levels are main cause 

NPDR and they start by affecting the tiny blood vessels in the eye’s retina[18]. This 

makes the blood vessels to swell and fluids to leak from them which results to the 

body lacking oxygen and nutrients. Proliferative DR on the other hand is an advanced 

stage which is caused by more swelling and leaking. This is a very hazardous stage 

that can result to permanent vision loss[18].  

NPDR is further classified into Mild DR, Moderate DR, and Severe DR. “Mild NPDR 

exhibits only microaneurysms, there is a small round red spot at the end of the blood 

capillary. Moderate NPDR presents with additional signs of impaired vessel integrity 
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and vessel occlusion, including dot and more than five microaneurysms occurs with 

flame-shaped hemorrhages[23], hard exudates, and cotton wool spots. Severe NPDR 

is accompanied by more distinct features of retinal ischemia, such as venous beading 

and intra-retinal microvascular abnormalities (IRMAs) that are adjacent to non-

perfusion areas”[20] and there are more than 20 intraretinal hemorrhages[23]. “PDR, 

is a more advanced stage of DR, is characterized by neovascularization. During this 

stage, the patients may experience severe vision impairment when the new abnormal 

vessels bleed into the vitreous (vitreous hemorrhage) or when tractional retinal 

detachment is present”[21].  

Diabetic retinopathy can therefore be classified into five classes namely; No DR, mild 

DR, Moderate DR, Severe DR, Proliferative DR. These classes are used in medical 

imaging of eye fundus images [22]. “The fundus is the inner surface of the eye, which 

is nearly opposite to the lens and includes the macula, retina, fovea, optic disc, and 

posterior pole” [23]. “The distinguishing factor between these sub-categories is the 

presence of micro-aneurysms number and intensity (MA). Table 2.1 shows clinical 

diabetic retinopathy severity scale[21]. 
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Table 2.1: International Clinical Diabetic Retinopathy Disease Severity Scale 

Disease Severity Level Observable Findings Upon Dilated 

Ophthalmoscopy 

No apparent retinopathy No abnormalities 

Mild NPDR Microaneurysms only 

Moderate NPDR More than just microaneurysms but less severe 

NPDR 

Severe NPDR Any of the following:  

• More than 20 intraretinal hemorrhages in 

each of four quadrants 

• Definite venous beading in two or more 

quadrants 

• Prominent Intraretinal microvascular 

abnormalities (IRMA) in one or more 

quadrants 

PDR One of either:  

• Neovascularization 

• Vitreous/preretinal hemorrhage 

 

Computer vision involves analyzing fundus images to extract critical features that 

distinguish one stage of diabetic retinopathy from another. These features for each 

stage of diabetic retinopathy include the following: Level_0 healthy: the fundus 

images do not show any signs of diabetic retinopathy.  Level_1 Mild Diabetic 

Retinopathy: Microaneurysms which are red dots as a result of capillary dilation[23] 

[20]. Level_2 Moderate diabetic retinopathy: More than five Microaneurysms, cotton 
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wool spots, and hard exudates. Hard exudates consist of lipid and proteinaceous 

materials that leak from the impaired bold retinal barrier[23][20].  

Level_3 Severe Diabetic Retinopathy: Venous beading which is the irregular 

constriction or dilatation of venules in the retina.  More than 20 intraretinal 

hemorrhage and formation of shunt vessels which appear as abnormal branching of 

blood vessels[23][20]. Level-4 Proliferative Diabetic Retinopathy: 

Neovascularization which is the formation of abnormal blood vessels, Vitreous 

hemorrhage which is the bleeding that appears in the gel like part of the eye[20][23].  

Figure 2.1 shows samples of eyes fundus images for each stage of diabetic 

retinopathy[23][29]. The arrows in the images point to the specific features that 

differentiate between the various classes of diabetic retinopathy.  

  

 

Figure 2.1: Fundus Images showing Stages of Diabetic Retinopathy (Source; [23] 

[29]) 
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Artificial intelligence and more specifically machine learning and deep learning have 

been applied in automated detection of diabetic retinopathy such as in [30] [31] [32] 

[19][28]. Automated detection of diabetic retinopathy involves training a neural 

network using labeled fundus images. Automated DR detection models are more 

powerful than human beings since they are able to classify multiple images within a 

short period of time, and without exhaustion. They are also scalable and can improve 

their classification accuracy, specificity, and sensitivity over time[33].  

According to a study conducted by [26] diabetic retinopathy is prevalent in Kenya 

especially among people with diabetes mellitus. This poses a challenge to many 

Kenyans since a study conducted by [26] revealed that there is no good integration of 

diabetic retinopathy care in government policy. This makes it difficult for patients to 

manage diabetic retinopathy in Kenya. The study recommends that the government 

can make innervations through policies such as:  first, integrating diabetic retinopathy 

with other top priority diseases in the country such as HIV, Malaria, and 

Tuberculosis[26].  Second, the costs of tests and medicine for DR to be included in 

the National Hospital Insurance Fund cover. Third, maintain an integrated electronic 

health information system to easily survey the prevalence of DR[26].  

Nkumbe et al [34] in a study to determine prevalence of diabetic retinopathy in Kenya 

records that; out of 171 eye images obtained for the study, only 92 eye fundus images 

were in good quality for analysis. The poor quality of fundus images was as a result 

of accidental opening of the fundus camera by clinicians as well as media 

opacities[34]. Therefore, there is need for the government through the ministry of 

health to facilitate the collection of fundus images so that automatic diagnosis of the 

disease can be possible.  
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2.3 Empirical Studies  

This section looks at previous works that have been done in the use of transfer learning 

and deep learning models for detection of diabetic retinopathy. The section also 

analyzes the techniques that the researchers used, the results they obtained, and the 

outstanding gaps in their work. The section forms part of objective one of this research.  

2.3.1 Detection using Convolutional Neural Network 

Thiagarajan et al.,[31] proposed a model that uses Convolutional Neural Network 

(CNN) to detect diabetic retinopapthy. The resercher records that the motivation 

towards the use of CNN was the automatic feature selection capabilities of CNN. The 

study used the Indian Diabetic retinopathy dataset which consists of 413 training and 

validation images (80% and 20% rescpectively) and 103 testing images. Data pre-

processing involved loading the images using opencv and resizing them to 256*256 

dimension [31].  

Data agumentation was done using keras and it involved horizonatal flipping, scaling, 

zooming in, cropping, and translation. Model training ivolved a CNN with 

convolution, dropuput, and max pooling layers. The study used batch normalization 

preciding activation layers, ReLU, Sigmoid scaled Exponential Linear Units (SeLU), 

and softmax were used as the activation functions. Binary cross-entropy was used as 

the loss function, and a series of optimizers. Grey-level Co-occurrence matrix was 

used to extract features in basic machine learning algorithms and managed to gain an 

accuracy of 48.78% with logistic regression [31]. The highest accuracy gained by the 

model was 80.036% with 4 layer Convolutional Neural Network (CNN), Adam 

optimizer, and softmax activation function, learning rate of 0.001, and binary cross 

entropy loss function[31].  
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 Although the study demonstrated that deep learning performs better than ordinary 

Machine learning in this task. The model is limited in that it performs binary 

classification yet diabetic retinopathy classification is a multi-class classification task 

with five classes. This means that the meodel can only classify fundus images as either 

DR+Ve or DR-Ve. Thus it is unabale to classify the DR+Ve fundus images into their 

respctive classes which are either Mild DR, Moderare DR, Severe DR, or Proliferative 

DR. Also, the resercher records that automatic hyperparamter tuning can be done using 

meta-learning to achieve better performance [31] 

2.3.2 Using Mask RCNN and Transfer Learning 

Shenavarmasouleh et al.,[32] proposed a hybrid DRDr II and recurrent neural network  

for early detection of diabetic retinopathy. The research used a public dataset from 

kaggle which had more than 35000 fundus images. A pretraind model of DRDr was 

used to perfrom transfer training . Data pre-processing was done using opencv. It 

involved cropping the images, removing extra blank space around them. The eyes 

were then transformed into perfect circles, gaussian blur was used to normalize the 

contrast level on each image [32].  

In data preprocessing the reserchers grouped the top two most categories together and 

the bottom two categories togther to create two three classes rather than the initail five 

classes. The resercher records that this was informed by the fact that there is close 

mapping between these categories of data. The reserchers used a feed forward neural 

network with 2 hidden states with 75 nodes, softmax activation function, adam 

optimizer with a learning rate of 0.001, and 100 training epochs. The model achived 

an accuracy of 92% [32].  
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Although this model achieved a good accuracy, the model  did not achieve the goal of 

classfying funuds images into the five classes of Diabetic Retinopthay since the 

researcher combined the first two and the last two classes thus resulting into a multi-

class classification of three classes rather than five classes. Secondly, the model did 

not perform inner-loop optimization thus the results achived by this model are not 

optimal. Third, this model used an imbalanced dataset, therefore, the accuracy 

obtained is not reliable other evaluation measures such as Recall, F1-score, and 

precision would have been used. The reseacher would have also considered reducing 

the data imbalance gap.  The limitations in this model make in unfit for classification 

of diabetic retinopathy since it cannot separate between mild and moderate classes as 

well as severe and proliferative diabeteic retinopathy. This ineffeciecy may greately 

impact disease management process.  

2.3.3 Convolutional Neural Network  

Pratt et al [35] proposed a CNN model that aimed at automatically detecting and 

classifying diabetic retinopathy. The network architecture comprised of 10 

convolutional blocks and three fully connected layers. Each convolutional layer had a 

max pooling layer and batch normalization. The first layers learn edges while the last 

layers learn classification features such as exudate. The researchers[35] also used 

weighted class weights relative to the number of images in each class to avoid 

overfitting. Drop out was also used in the dense layers while L2 regularization was 

used in the convolution layers[35].  

The researchers used a dataset with 80,000 images obtained from Kaggle out of which 

5000 images were used for validation. Further the researcher used Nvidia GPU which 

made it possible for the researchers to train faster and with more images[35]. Data pre-

processing involved color normalization, data augmentation, and resizing the images 
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to 512*512 pixels. Training involved first pre-training the network using 10,290 

images for 120 epochs and then training with 78,000 images for 20 epochs. Stochastic 

gradient descent with Netsrov momentum was used. The pre-training phase took 350 

hours to achieve an accuracy of 60%[35].  

The model achieved an accuracy of 75%, specificity 95%, 30% sensitivity,[35] and 

F1-score 41.6%[17]. The high specificity of the model was a tradeoff of lower 

sensitivity. Specificity is the total number of patients identified as not having diabetic 

retinopathy out of total number of instances without diabetic retinopathy. Sensitivity 

on the other hand is the total number of patients identified as having diabetic 

retinopathy out of total number of instances with diabetic retinopathy. Accuracy is 

class-wise classification[9].  

Although the model automated diabetic retinopathy and achieved high specificity it 

has several drawbacks. First, the high specificity and low sensitivity shows that the 

model was affected by class imbalance since it focused more in the negative class 

which had more instances. This shows that the model has 70% chance of 

misdiagnosing a patient as negative while as the patient is positive thus negating the 

need for automation. Second, the model still achieves relatively low accuracy since it 

has 25% chance of misclassifying a patient. Third, the model took long to train in the 

initial phase, transfer learning would have addressed this problem. Fourth, the model 

uses SGD which is prone to poor generalizability in global and local minima’s.  

2.3.4 Transfer Learning and Small Dataset 

Hagos and Kant [19] developed a transfer learning model that was aimed at solving 

the problem of shortage of large amounts of labeled data that is usually required for 

deep learning. The study used a pre-trained Inception-V3 model to take advantage of 
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its inception models. The reserchers used keras library to import the pre-trained model 

and then added a classifier to classify the fundus images as healthy or unhealthy. A 

dataset consisting of 2500 images was used for training and testing [19].  

Image pre-processing was done which involved resizing and cropping the fundus 

images. Cropping was done using opencv in python and the images were resized to 

300*300 pixels. The researchers used the pre-trained part of the Inception V3 to do 

feature extraction [19]. Classifier training was done on top of the pre-trained model 

using the relu-activated layer, stochastic gradient descent with an asceding learning 

rate of 0.0005, and softmax output function. Cosine loss function was used to calculate 

error since it has delivered good perfomance in small datasets. The model was tested 

using 500 unseen fundus images and it achieved an accuracy of 90.9% and a loss of 

3.94% [19]. 

Although this study tried to solve the deep learning probel of requring huge datasets 

by adopting transfer learning which is an aspect of meta-learning, the model only did 

binary classification which classifies the fundus as either healthy or unhealthy. This is 

not efficient because, diabetic retinopathy is classfied into five catgeories which are 

zero, Mild, Moderate, Severe, and Proliferative diabetic retinopathy. Also, the model 

used stochastic grdient descent which conveges in the local minima and fails to 

converge in the global minima. The model achieved a very high loss of 3.94% which 

is not desirable.  

2.3.5 Meta-Learning with Noisy Data  

Algan et al.,[28] proposed a label-noise-robust learning algorithm that uses meta-

learning paradigms. The main aim of the model was to utilize meta-learning 

techinques to learn from noisy labels and achieve high accuracy. Training involved 
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three levels namely:pre-training,  meta-training and conventional training. Pretraning 

involved using a ResNet50 architecture with model parameters pretrained on Imagenet 

dataset [28]. Further pre-training is done using Diabetic retinopathy dataset.  In meta-

training a multi-layer perceptron neural network is trained with an aim of seeking soft 

labels for each nosiy data. Stochastic gradient descent, KL-divergence loss function,  

back propagation, and cross-entropy loss function were used [28].   

The study used primary data with 1947 images. 200 images were used for training as 

correctly labeled images, 1447 were used for training as noisy-label images, while 300 

were used for testing. Data pre-processing involved ressizing the images  to 256*256 

and the center crop to 224*224. Random horizonatl flip was used for data 

augumentation. The model achieved a training accuracy of 86.3% and testing accuracy 

of 91.4% [28].  

The model performed well in dealing with noisy-label dataset, however, the model 

uses stochastic gradient descent optimizer which increases the variance because it only 

uses one example for each learning step. Also, in each iteration of the SGD, the 

learning step wanders around the minimum region without convergence since the 

noise makes it to go back and forth. This highly affects the generalizability of the 

model. Also, the model does binary classification of images as either healthy or 

unhealthy but does not classify the images into the various classes of Diabetic 

Retinopathy. This means that the model can only tell if a person has diabetic 

retinopathy or not. However, if the patient is +ve the model cannot determine the 

severity of DR.  
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2.3.6 A deep Learning Ensemble Approach  

Qummar et al [17] developed a model that involved an ensemble of five Transfer 

learning models namely: ResNet50, InceptionV3, Xception, DenseNet121, and 

DenseNet169. The aim of the model was to encode the rich features involved in 

detection of diabetic retinopathy as well as improve the classification accuracy. 

Qummar et al [17], noted that previous works in this area were challenged in they did 

not consider data imbalance and the meta-learning step of hyperparameter tuning and 

its implications. The researchers used the Eyepacs dataset which is publicly available 

Kaggle.  

Data pre-processing involved resizing the images to 786*512, then randomly cropping 

them to 512*512. In order to balance the data first, up-sampling was done through 

augmenting images in the minority classes. Second, down-sampling was done which 

involved removing some instances in the majority to match with minority class sizes 

of 708 images per class. After down-sampling the dataset is divided into training, 

validation, and testing sets using the ratios of 64%, 20% and 16% respectively[17].  

The researchers used Adam learning rate and the Nestrov-accelerated adaptive 

moment estimation to update the learning parameters. The learning rate is initially set 

0.001 and then decreased by a factor of 0.1 to 0.000005 for 50 epochs with early 

stopping to avoid overfitting[17]. The researchers used stacking to combine the results 

of all different models and generate unified results. Qummar et al [17] records that in 

the case of imbalanced data, accuracy is a misleading metric since it is biased towards 

the majority class. To address this the researchers considered other metrics as F1-

score, precision, recall, and ROC curve[17].  
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The model achieved the following results: The imbalanced dataset had: Accuracy 

80.8%, Recall 51.5%, specificity 86.7%, precision 63.85%, F1-Score 53.74%[17].  

The results of the down sampled data were: Accuracy 58.08%, recall 58.10%, 

precision 70.3%, specificity 85.5%, F1 score 53.64%. The model also achieved an 

average Area Under the Curve (AUC) of 0.91. This was computed by averaging Micro 

AUC (0.95) and Macro AUC (0.87). It was noted that the performance of the model 

increases with decrease in the learning rate. Also, SGD registered better performance 

than Adam[17].  

The major drawback of the ensemble model is the high number of learnable 

parameters which increases computational cost and reduces the efficiency of the 

model [23]. Also, the model is not yet optimal since it performed relatively low in all 

the measures compared to the model developed in this research as shown in Table 4.8.  

When training cost increases the model becomes infeasible in hospital set-up 

especially in developing countries since those hospitals would require HPCs to operate 

the model.  

2.3.7 Ensemble Framework of Deep CNNs  

Jinfeng et al [36] proposed a transfer learning model that aimed at addressing the 

challenges of imbalanced data in detecting diabetic retinopathy. The key motivation 

behind this research was that training deep neural network with imbalanced data 

results to biasness in classification. The researchers used the EyePacs Diabetic 

retinopathy dataset available in Kaggle repository[36]. Data pre-processing involved 

the following: resizing the images to 786*512, randomly cropped patches of 512*512 

to avoid training overhead, mean normalization of each image, then the data imbalance 

is solved through up sampling[36].  
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Up sampling involved augmenting minority classes through 90 degrees rotation and 

flipping. The balanced dataset is then divided into training, validation, and testing sets 

in the ratios of 64%, 16% and 20% respectively. The balanced dataset has 129050 

samples from which equal batches of size 27530 are generated from the training 

dataset[36]. The researchers then used two approaches: Model 1 is an ensemble 

DesnseNet121 trained on the three batches. Model 2 is a bagging ensemble of 

DesnseNet121, ResNet50, and Inception V3. All the models are pre-trained on 

ImageNet dataset and then fine-tuned using the three datasets[36].   

The results of the study were as follows: the accuracy of the balanced data and 

imbalanced data in the first model were 60.80% and 78.13% respectively. However, 

class-wise results demonstrate that the balanced data has better performance compared 

to the imbalanced dataset[36].  The model achieved an average AUC of 0.895 in the 

imbalanced dataset and 0.87 in the balanced dataset. The overall results achieved by 

the two models are as follows: Model 1 recall 44.85%, specificity 85.48%. Model 2 

accuracy imbalanced dataset 80.36%, Accuracy balanced dataset 60.89%, recall 

47.70% and specificity 85.94%[36].  

The model developed Jinfeng et al [36] is limited in the sense that it has achieved 

lower performance in the balanced data which goes against the hypothesis of the 

research, which was that data imbalance impairs performance. The model tends to 

perform poorly with large dataset. Also, the model is not optimal since its performance 

is lower than that of a previous model by Qummar et al [17] and also lower than the 

performance achieved by the improved model in this research as shown in Table 4.8.  
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2.3.8 Deep Learning Approach  

This model was proposed by Tymchenko et al.,[30] it uses deep learning approaches 

that uses an ensemble of three convolutional neural network architectures 

(EfficeintNet-B4, EfficientNet-B5, and SE-ResNext50)  and few shot-learning to 

detect deiabetic retinopathy. The model also proposes a transfer learning appraoch that 

makes use of similar datasets with different labeling. The following datasets were used 

in the model; EyePACs 2015, Indian diabetic retinopathy image dataset, MESSIDOR 

dataset, and APTOS 2019 blideness detection dataset.  

Data preprocessing which involved image cropping and resiszing was done. High 

amount of agumanetation was used to prevent CNN from overfiting due to correlation 

between image conents and its features [30]. The reserchers divided the training phase 

into three phases; first pre-training where the model is trained with minibatch-

Stochastic Gradient Descent, cross-entropy loss function and cosine-annealing 

learning rate. Second, the main training phase which used focal loss function, rectified 

adam optimizer and cosine-annealing learning rate schedule. Thrid, the post training 

phase which focused on fitting the regression part of the model. The model acchieved 

a quadritic weighted Kappa score of 92.5% [30].  

The main challenge with this model is that although it has tried to achieve few-shot 

learning and transfer learning which are part of meta-learning, it does not perform 

two-level optimization. Secondly, the model has not provided other evaluation 

measures that are necessary for evaluating model’s perfomance. The resercher 

proposes as part of future work that meta-learning and more accurate hyperparameter 

optimization can be done. 
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2.3.9 Detection Using VGG-NIN a Deep Learning Architecture  

Khan et al [23] proposed a model that focuses on classifying diabetic retinopathy to 

different stages with the lowest learnable parameters to speed up training and enhance 

model convergence. To achieve this the researchers proposed stacking of the VGG16, 

spatial pyramid pooling layer and network-in-network (NiN) to create a highly non-

linear scale-invariant model. The proposed model VGG-NIN is capable of processing 

DR image at any scale due to the SPP layer as well as achieve higher accuracy due to 

the NiN layer. The researchers used the labeled EyePacs dataset which consisted of 

35126 images belonging to five classes[23].  

Data pre-processing involved the following: resizing the images to size 1349*1024 

and then random cropping to size 512*512 and data augmentation were done. The 

spatial pyramid pooling layer was embedded between the last convolutional layer and 

the first fully connected layer. The SPP layer performs information aggregation and 

thus avoids loss of features as a result of cropping and resolution adjustment. The Nin 

layer is then added on top of the SPP layer. Parametric Relu (PRelu) is used to compute 

the activation function. PRelu reduces overfitting by learning the rectifier parameter 

adaptively.  

During training, the convolutional layers of the VGG16 model are frozen but the fully 

connected layers and the NiN layers are fine-tuned. The model achieved the following 

results: Micro AUC 95.0, Macro AUC 84.0 (weighted AUC 89.5), overall accuracy 

85%, overall recall 55.6%, Overall precision 67%, overall specificity 91%, overall F1 

score 59.6%.  

The model is challenged in that it performed very poorly in recall, precision, and 

F1.Score. The low performance can be attributed to the model’s complexity brought 
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about by the added network in Network layer. Ideally a classification model should 

aim to have a high recall. The model architecture and training process needs to be 

modified so that it can overcome the drawbacks of the Network in Network layer. 

Modification would result into a more robust model that would achieve better 

performance compared to what this model by Khan et al [23]  has achieved.   

2.3.10 Transfer Learning from Pre-trained CNN Models 

Chilukoti et al [18] proposed transfer learning models for diabetic retinopathy 

detection. The researchers used pre-trained ResNet50, VGG16, and EfficientNetB3 

and fine-tuned them to fit the Eyepacs Kaggle dataset. The main goal of this study was 

to develop a model that is able to detect all stages of diabetic retinopathy. The 

researcher records that EfficientNetB3 achieved the highest quadratic weighted kappa 

metric of 0.85. The dataset was divided into three sets namely: training with 24590 

retinal images, the validation set and test set had 5268 images. The images were 

resized to 150*150 resolution[18].  

All the pre-trained models were frozen during the training and validation phases and 

only the final classifier is trained. Initially all the models were trained for 30 epochs 

and the best model which was EfficientNetB3 was selected and retrained for another 

30 epochs while saving the weights[18]. The researchers used metrics such as 

accuracy, precision, recall, F1-score, and quadratic weighted kappa metrics. Adam 

optimizer was used as the optimizer of choice, gradient clipping of value 0.1 to avoid 

exploding gradients. A weight decay value of 10-4 was used therefore the learning rate 

for all the models was set at 0.001[18].  

The top layer of the model was replaced as follows in a sequential manner: flattening 

layer, fully connected layer, dropout with a value of 0.5, full connected layer, dropout 
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of 0.25 layer, and finally the output layer. All the layers have Relu activation function. 

The results of the best model against the performance metrics were: Accuracy 0.87, 

F-1 score 0.84, precision 0.85, Quadratic weighted kappa metric 0.85, and Recall 0.87 

[18].  

Although, this model has achieved higher performance compared to previous models 

such as Qummar eta al[17] and Khan et al [23] , the model did not leverage on the 

power of self-optimization as well as weight sharing in the convolution block.  

2.3.11 Transfer Learning Based Robust Automatic Detection  

Charu, Jain, and Sood [27] proposed a model for grading diabetic retinopathy using 

transfer learning and dynamic investigation. The model uses pre-trained neural 

network architectures for feature extraction, prominent feature transfer learning 

approach (PTFL), and then transfers the features to support vector machine for 

classification. The transfer learning architectures used in this case are AlexNet, 

GoogleNet, ResNet, VGGNet, and Inception. The datasets used in this study were the 

Messidor dataset and the IDRiD dataset [27]. 

 The researchers conducted a series of experiments aimed at determining the best 

model for solving the task at hand. The results demonstrated that InceptionV3 

performed best when combined with PTFL approach utilizing statistical feature 

reduction approach since it achieved an accuracy of 90.51%, sensitivity of  89.42%, 

specificity of 90.78%, precision of 91.95%, F1-score of 89.81%, and Area under the 

curve (AUC) of 0.91 [27].  

Although this study was able to achieve high performance by leveraging on transfer 

learning it is limited. This is so because, the study uses Messidor dataset which 

classifies diabetic retinopathy in 4 classes namely: Healthy, Mild, Moderate, and 
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Severe thus it omits the proliferative diabetic retinopathy class[27].  Therefore, this 

model is not suitable for diabetic retinopathy classification since it will wrongly grade 

people with proliferative Diabetic retinopathy. This is especially critical where special 

care is required for PDR patients.  

2.4 Machine Learning Model Development Approaches  

Machine learning development is different from standard software development. 

Unlike standard software development which has explicit features, machine learning 

revolves around experimentation[37]. Machine learning aims at extracting patterns 

from data. Therefore, machine learning developers experiment on different datasets, 

algorithms, third party libraries, and parameter with an aim of optimizing business 

performance metric such as accuracy. The performance of a model is dependent on 

the training data and the training process, therefore, reproducibility of machine 

learning models is paramount[37].  

Machine learning model development involves a common pipeline that is applied not 

only in standard machine learning algorithms but also in deep learning and its variants. 

The pipeline’s aim is to use data as input and generate machine learning models that 

are capable of achieving high performance in unseen data[11]. The pipeline also 

known as machine learning workflow involves the following broad stages: Data 

management, Model learning, and Model verification[11]. Each stage in this workflow 

involves sub-activities and processes which differentiate the various variants of 

machine learning and deep learning. Researchers in the field of machine learning work 

on optimizing this workflow to achieve more optimal and powerful model[37].  
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2.4.1 Data Management  

Data management is a broad term in machine learning that involves several activities 

such as: acquisition of the data, pre-processing of the data, and feature extraction from 

the data. Data acquisition refers to getting the appropriate data that is needed to train 

the model. Data can be of two types namely primary data which is collected by the 

researcher or secondary data which is obtained from a repository[38]. Primary data is 

mainly used in situations where secondary data is not available. Primary data provides 

researchers the ability to collect data that is much oriented to the task the model is 

intended to solve. However primary data is expensive to acquire. Secondary data is 

the most commonly used in many models since its readily available in public 

repositories [39][38].  

Data pre-processing is a crucial step in machine learning workflow that aims at 

converting data from its raw form to a form that is ready for training a machine 

learning model[40]. Data pre-processing also aims at reducing the dimensionality of 

data by eliminating unnecessary elements from the data. This makes it easy for a 

machine learning model to learn from the data with ease. [41] argues that the specific 

activities involved in data pre-processing depend heavily on the nature of the data, the 

algorithm used, the library used, and the nature of the task or expected output. In image 

processing data pre-processing involves aspects such as resizing, data augmentation, 

channel conversion, among others[42].  

Feature extraction is mainly used in image processing, natural language processing, 

and video processing tasks. In image processing feature extraction refers to obtaining 

distinctive features from image that differentiate an image of one class from another. 

It is useful in machine learning since it makes it possible for developers to focus on 

necessary features from an image without losing critical aspects of the image[43]. 
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Further to this, feature extraction also helps in automatic exploratory data analysis as 

well as making data visualization to be more convenient[44].  Feature extraction can 

be grouped into two main categories namely low-level feature extraction and high-

level feature extraction.  

2.4.1.1 Low-level feature extraction 

This involves extracting features that fall into the following categories: First color 

features, which involve using color to differentiate different images. Some of the 

techniques under color feature extractors include; “color histogram, color moments, 

color coherence vectors, color correlogram, Average RGB, scalable color descriptor, 

color structure descriptor, and dominant color descriptor”[44]. Secondly, texture 

features which involve computing texture of an image from the pixels. The techniques 

under texture feature extractors include: Grey Level co-occurrence matrix, steerable 

pyramid, contourlet transform, Gabor wavelet transform[44].  

Third, shape features which focuses on the shape of an image. Shape is considered to 

be a primitive feature for image content description[44]. Shape features can be 

grouped into two categories namely region-based methods and contour-based 

methods. Region based methods use the whole area of an image for shape description. 

Contour based methods are the ones that use contour information only. The techniques 

under shape features include: “Geometric moments, Algebraic moment invariants, 

Zernike moments, Fourier descriptor, Region-based Fourier descriptor, and Wavelet 

transform”[44].    

2.4.1.2 High-level feature extractors 

These ones focus on extracting features that are specific to a particular set of images. 

They are characterized with high levels of abstraction and are mostly used together 
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with low-level feature extractors[45]. High-level feature extraction is used in object 

detection since it helps a lot in differentiating one object from another. Convolutional 

neural networks have proofed to be powerful feature extractors for both low-level 

features and high-level features[45].  

2.4.1.3 CNN feature extractors 

Unlike standard machine learning algorithms, CNNs do not require a separate feature 

extractor since the CNN layers have the ability to extract features from the data. A 

typical convolutional neural network architecture usually consists of the convolution 

layer, activation layer, pooling layer, and fully connected layer[46]. The convolutional 

layers have convolutional kernels with each kernel extracting certain features. The 

initial layers start with extracting basic features such as edges and shapes. The 

complex and specific features are extracted at the last layer[46].  

Convolutional neural networks have proofed to be more powerful than other machine 

learning algorithms since the inbuilt feature extraction capabilities eliminate the need 

for hand crafted features. Pre-trained CNN networks usually use their last output layer 

to extract high-level feature from an image.  CNN uses 1D and 3D convolutional filters 

to extract spectral and spatial-spectral features respectively[46]. On the other hand 2D 

filters are used to analyze colored as well grey-scale images. Features extracted from 

CNN 1D, 2D, and 3D can be used to train other classifiers such as SVM, decision tree, 

and random forest[46].  

2.4.2 Model Training 

Model training is where actual machine learning takes place and it involves, selecting 

an algorithm, choosing hyperparameters, and training the algorithm using the training 

dataset[11]. This is a very critical stage since the algorithm chosen should be suitable 
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for the task to be solved. There are algorithms that are robust such that they can 

perform both classification and regression while there are others such as K-means 

clustering that are purely for clustering purposes. Some of the popular image 

classification algorithms include; Decision tree classifier, Support Vector Machine 

(SVM), Random Forest classifier, K-Nearest Neighbors (KNN), and Artificial Neural 

Networks, among others.  

2.4.2.1 Support Vector Machine  

Support Vector Machine (SVM) is both a regression and a classification algorithm 

which was introduced by Vapnik as a kernel based machine learning algorithm[47]. 

SVM has demonstrated prowess in solving binary classification tasks due to its 

theoretical foundation. SVM focuses on creating a decision boundary known as a 

separation hyperplane between two classes. The separation hyperplane is oriented in 

such a way that it is furthest from the closest data points of each class. These closest 

points of each class are known as support vectors. An ideal separation hyperplane 

should be in such a way that it avoids misclassification and at the same time maximizes 

the distance from the hyperplane to the support vectors[48]. Figure 2.2 show a linear 

SVM classifier. 

H1 and H2 represents parallel hyperplanes, the goal is to maximize the distance 

between these two parallel hyperplanes. While maximizing this distance some data 

points known as support vectors may fall on H1 and H2, these will represent the 

maximum level at which the distance can be maximized[47]. An optimal hyperplane 

is now introduced between the two, this optimal hyperplane is H. From the figure 2.2 

it is evident that H avoids marginal error by maximizing the distance between H1 and 

H2 it has also avoided misclassification error since no data point has been 
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misclassified. w represents a weight vector perpendicular to the optimal hyperplane, 

b represents the bias, while X1 and X 2 represent data points [47].  

 

Figure 2.2: SVM Linear Classifier (Source; [47]) 

2.4.2.2 K-Nearest Neighbors  

It is a machine learning algorithm that can be used for classification as well as 

regression and it falls under the category of supervised learning algorithms. K-Nearest 

Neighbor classifier classifies each element based on its K nearest neighbors. The 

algorithm works on the assumption that similar things exists in close proximity[49].  

Therefore, it determines the collect class of a test sample by calculating the distance 

between the test sample and the training samples. Choosing the right K value is critical 

in the performance of KNN. Therefore, in most cases researchers test with different 

value of K until they find one which offers better performance in the data set being 

used[49]. KNN is simple to implement but it is unreliable when the number of classes 

as well as number of samples increase.  



34 
 

2.4.2.3 Decision Tree  

Decision tree is a supervised machine learning algorithm that can be used for both 

classification and regression. For classification tasks, a decision tree classifier is used. 

Decision tree algorithm consists of node and branches which make up a tree. Nodes 

represent features in a category to be classified[50]. The intuition behind decision trees 

is that you use dataset features to create binary question and continue splitting the 

dataset until all data points belonging to a particular class are isolated. The first node 

in a decision tree is known as the root node while the last node is known as the leaf 

node[51].  

Two main variables namely entropy and information gain affect decision trees.  

Entropy refers to the measure of dataset randomness, it ranges from 0 to 1, the higher 

the entropy the more complex the decision tree gets and the worse it performs. 

Information gain refers to how much information a feature provides about a class. 

Therefore, unlike entropy the higher the information gain the better the 

performance[50]. Decision trees are powerful especially for binary classification. 

However single-tree model is possibly sensitive to specific training data and easy to 

overfit[52] 

2.4.2.4 Random Forest  

Random forest is an ensemble of multiple decision trees such that each tree depends 

on a random independent dataset and all trees in the forest have the same random 

distribution[52]. The capacity of random forest is dependent on two main factors 

namely: the individual strength of each tree and the correlation between the trees. 

Better performance is achieved when the strength of a single tree is high and the 

correlation between the trees is low[52]. The trees may not necessarily have equal 

capacity which is as result of the randomness of the trees. Random forest addresses 
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the challenges of decision trees, thus making it to be more robust than decision trees. 

This is because random forest reduces variance when averaged over trees and also 

decolorates the trees[53].  However, random forest classifiers in Image classification 

are dependent on hand crafted features.  

2.4.2.5 Artificial Neural Networks  

Artificial Neural networks simulate the behavior of human brain allowing computer-

based programs to solve complex problems. Artificial Neural networks are at the heart 

of deep learning which is a branch of machine learning[54]. Deep learning refers to a 

neural network with multiple complex layer[55]. The general structure of an Artificial 

Neural network involves the input layer, the output layer, one or more hidden layers, 

then each of these layers have neurons which are also referred to as nodes[55]. Each 

neuron connects to another neuron and has an associated weight, threshold, and an 

activation function. If the output of a certain neuron is above the threshold then the 

activation function activates the neuron, thus, allowing the neuron to pass data to the 

next layers. If the threshold is passed no data is passed to the next layer[54][55].  

Figure 2.3 shows a deep neural network with three hidden layers with each having five 

neurons, an input layer with five neurons, and an output layer with three neurons[54]. 

The number of neurons in the output layer for classification task is dependent on the 

number of classes that the network classifies data into. Thus, a binary classification 

neural network has two neurons in the output layer while a neural network that is 

supposed to classify data into three classes has three neurons in the output layer as 

shown in Figure 2.3. 
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Figure 2.3: Deep Neural Network (Source; [54]) 

Neural networks have gained a lot of popularity in the recent past mainly due to their 

high-performance capabilities across different sets of tasks[56]. Neural networks can 

be grouped broadly as either feed forward neural networks or feed backwards neural 

networks. Feed forwards neural network propagate information from one layer to 

another until it gets to the output layer. Feed backward neural networks on the other 

hand use internal state memory to process sequence of data[55]. Deep learning is the 

main area of research by many researchers such as [31][57][8]in neural networks 

mainly due its wide scope of application and capabilities.  

 

Neuron  

Connection Between Neurons in the 

first hidden layer and the second 

hidden layer. 
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Deep learning, which involves training deep neural networks has evolved over time 

as researcher aim at improving its capabilities. This has resulted to more powerful 

neural networks that can perform tasks that could have otherwise been difficult to 

perform using ordinary machine learning algorithms[58]. Convolutional neural 

networks are the most used deep neural network in image processing tasks[59]. They 

are considered to be essentially powerful due to their capabilities to extract both low-

level and high-level features from images [46]. 

However, Deep neural networks require a huge amount of data and high computational 

resources to train a model.  Also, deep learning has a wide range of hyperparameters 

that need to be tuned[60]. Therefore, researchers in this field have focused on 

optimizing the training process through hyperparameter tuning as well as enhancing 

the capabilities of the deep neural networks. One major solution to these challenges is 

an  advancement of deep learning known as Meta-learning[13][28].  

2.5 Meta-Learning  

Meta-learning is also referred to as learning-to-learn. It is a field of Artificial 

intelligence that aims at improving the conventional machine learning and deep 

learning approaches where tasks are performed from scratch using a fixed learning 

algorithm. The aim of Meta-learning is to improve the algorithm. This provides an 

avenue of solving the key machine learning challenges which include data, 

performance, generalization, and computational bottlenecks [14].  According to [4] 

the goal of Meta-learning is to train a model with a diversity of tasks so that the model 

can easily solve new but related learning tasks with fewer training samples. This is 

achieved through transfer learning. 
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[14] records that even though deep learning techniques which were considered to be 

an improvement in machine learning have achieved great success, they have great 

drawbacks in the sense that their success is pegged on the availability of huge volumes 

of data and high computational power. This excludes some application areas where 

huge volumes of labeled data are either unavailable or expensive to obtain.  

According to [4], learning quickly is the hallmark of human intelligence, this may 

involve learning new skills quickly or using previous knowledge to learn new things 

faster. Meta-learning imitates this human intelligence by creating a model that 

leverages on previous knowledge to learn a new task [4]. The meta-learning 

framework enables models that have been developed using meta-learning approaches 

to be less costly to train and more robust than those developed using deep learning 

through learning from few shots [61].  

Finn, Abbeel, and Levine demonstrate that with a task-agnostic algorithm for meta-

learning, a model can be trained in a way that few gradient steps can result to quick 

learning of new tasks [4]. Meta-learning can be framed as an optimization procedure 

in which the inner level represents an adaptation to a particular task while the outer 

level represents the meta-training objective. This formulation can result in 

understanding the optimal parameters specific to a model and also suitable for 

generalization [62]. According to [63] Meta-Learning can be viewed in two 

approaches: First, mechanistic view, this involves training a meta-learning model with 

meta-data. Secondly, the probabilistic view, this involves extracting prior information 

from a set of Meta training task that allows efficient learning of new tasks through 

transfer learning.  
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Equation 2.1 below is the Meta-learning equation for setting the meta-learning dataset 

to obtain meta-train task in a multi-task setup. 

Dmeta−train = {(Dtr 1 , D
ts 1 ), ...,(D

tr n , D
ts 

n )}.  

Equation 2.1 

Where: 

Dmeta−train represents the meta-training data, 

Dtr represents training subset 

Dts represents the testing subset.   

This data is used to learn function θ ∗, representing a global meta-learning parameter 

that will contain the information needed to solve a new task. Equation 2.2 represents 

the Meta-learning Equation which is used to obtain θ ∗  [63]:  

θ∗ = arg max θ log p(θ|Dmeta−train) 

Equation 2.2 (Source; [4] [61]) 

From this equation it is evident that the Meta-Learning problem is to obtain the right 

θ∗ starting from the initial model parameters θ and the meta-training data.  θ∗ contains 

everything that model needs to know in order to solve a new but related task.  This is 

called outer loop optimization [61]. 

To achieve an efficient θ∗ the parameters of θ needs to be fine-tuned on the training 

task of each meta-learning task. This results in the adaptation equation 2.3. 

φ ∗ = arg max φ log p(φ|Dtr, θ) 

Equation 2.3 (Source; [13]) 
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representing the set of the parameter of the specific task, reached through a meta-

optimization problem from θ, called inner loop optimization [61]. The key idea is to 

use φ ∗ as model parameters to assess how the optimization of θ is good for classifying 

new unseen data points, represented by the test part of each meta-task as shown in 

figure 2.4. 

 

Figure 2.4: Meta-Learning (Source; [61]) 

Figure 2.4 demonstrates that for every meta-task, φi with xtrain determines ytrain and xtest 

together with φi determine ytest, which is observed during meta-training and not during 

meta-test. The meta-training phase can involve training with multiple collections of 

datasets, like Dmeta−train. The meta-test phase comes into play once meta-training is 

complete and one wants to adapt the model to a training set of a new task [61] [63]. 

2.6 Meta-Learning Approaches  

There are three approaches to Meta-learning: First, Hyperparameter optimization. 

Second, Multitask-Learning and Transfer learning. Third, Ensemble techniques 

include bagging, stacking, voting, boosting [16] [61] [63]. All of the above approaches 

to Meta-learning are aimed at ensuring that the model performs at optimal levels in all 

aspects. 
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2.6.1 Multi-Task Learning   

Multi-task learning is a learning approach that aims at aims at jointly learning multiple 

tasks using shared knowledge among the tasks and then leveraging useful knowledge 

acquired from these several tasks to help improve the performance across all these 

related tasks through transfer learning.[64][65]. Zang and Yang [64] record that multi-

task learning helps in eliminating overfitting by enabling a model to be more robust 

and learn a universal representation of multiple tasks. This also improves the model 

in the performance of each task. According to [66] multi-task learning is  neural 

network that tries to simulate how human beings are able to apply previous knowledge 

in learning new things.  

Multi-task learning can be implemented using two main approaches which are soft 

and hard parameter sharing of hidden layers[66]. Hard parameter sharing involves 

sharing the hidden layers across all the tasks while task specific output layers are 

sustained. It is the most commonly used method of multi-task learning since it reduces 

the possibility of model overfitting. This is so because the more the tasks the model 

learns the more the model tries to find a general representation of the tasks rather than 

a task specific representation. Zahng et al [67] argues that hard parameter sharing 

reduces storage cost and improves model’s performance.  

In hard parameter sharing, the bottom / shared layers act as feature extractors and thus 

they hold weights that can be transferred to top-layers/ task specific layers of 

individual tasks. This approach is known as top-specific parameter sharing. Hard 

parameter sharing and transfer learning go hand in hand since there is transfer of 

weights across tasks.  Figure 2.5 shows hard multi-task learning [66]. The shared layer 

contains the general knowledge that is applicable to the three tasks A, B, and C. The 

task specific layers filter from the general knowledge specific knowledge that applies 
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to the specific task. The number of tasks is not limited to three, there can be as many 

tasks so long as the tasks are in line with the knowledge contained in the shared layers.  

 

Figure 2.5: Hard parameter Sharing in Multi-task Learning (Source; [66]) 

Zahng et al [67] proposed an improvement to conventional hard parameter sharing by 

altering the shared layers. In the new model Zahng et al [67] used a bottom-specific 

approach in which, each task has its own task-specific bottom layers, then the top-

layers are shared across the tasks. Experiments to validate this were conducted using 

MobileNetV2, ResNet50 and MNasNet neural network architectures. The neural 

network architectures were initially pre-trained using the ImageNet dataset then their 

multi-task versions are trained jointly through transfer learning to fit the task specific 

datasets. The task specific datasets used included: FGVC Aircraft, CUB200-2011, 

Stanford cars, Stanford Dogs and MIT indoor Scenes.  

Soft parameter sharing involves each task having its own model with its specific 

parameters. The parameters are then encouraged to harmonize by regularizing the 

distance between them.  There exist various regularization techniques that can be used 

in soft parameter sharing. They include; L1 regularization which estimates the 
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derivative of the loss function around the median of the data, L2 regularization in 

which the loss function tries to minimize the loss by subtracting it from the average of 

the data distribution,  use of an autoencoder  scheme which is an enhanced neural 

network with the same number of neurons in the input and output layers[68]. Figure 

2.6 shows Soft parameter sharing  [66]. Tasks A, B, and C represent the specific tasks 

while the constrained layers show the specific model for each task. The bidirectional 

horizontal lines interconnecting the constrained layers of each task represents the 

regularization that is used to harmonize parameters.  

 

 

Figure 2.6: Soft Parameter Sharing (Source; [66]) 

2.6.2 Transfer Learning  

Transfer learning is part of meta-learning that focuses on transferring knowledge that 

is  learned from a task A  to a new related task B [19].  This therefore, means that task 

B does not have to learn the features of the task from scratch since it leverages on what 

is already known from task A. Transfer learning is mainly used together with hard 

parameter sharing. Through transfer learning a model is able to easily achieve optimal 

performance without demanding very high training overheads [66].  

 

Task A 

Model 

Regularization  
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Transfer learning mainly involves a series of steps which include the following: First, 

pre-training the model using a more general task. In image classification, researchers 

such as [17][18] have used the ImageNet dataset to pre-train the model. Second, the 

weights of the pre-trained model are transferred to the new but related task[69]. 

Therefore, a model that has been pre-trained for image classification, its weights can 

only be used for image classification task. In doing so the model is first frozen so that 

important features are not lost.  

Third, task-specific trainable layers are added on top of the pre-trained model. These 

layers may vary depending on whether the researcher wants to modify the architecture 

or not. However, in most cases the top layer is replaced with a task-specific layer in 

terms of the number of neurons [70][71][60]. Also, the appropriate activation function 

for the output layer and the number of classes for the multi-class classification task 

are set. Fourth, training the model to extract features from the dataset of the new task 

B. This enables the model to use the knowledge gained from task A to extract features 

in a new task B as well as training the added layers[72]. 

Fifth fine-tuning the model to achieve optimal performance on the target dataset. This 

stage involves unfreezing some or part of the entire base model with the aim of now 

training it to fit the new task in the most optimal way[73]. Unfreezing the model 

increase the number of trainable weights thus making it possible for the model to fit 

the new dataset. This stage is very critical and involves a lot of hyperparameter tuning. 

The task is more challenging especially in a domain shift scenario whereby a model is 

pre-trained using a dataset in a certain domain then the weights are transferred to fit a 

task a new domain. For instance, a model pre-trained using ImageNet dataset and then 

the weights are transferred to medical imaging task will have a domain shift challenge.  
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Thus, much of the research in transfer learning focuses mainly on fine-tuning the 

model to fit the task at hand[73] [74]. The ability of a transfer learning to achieve 

optimal performance in task in different domain is known as domain shift 

generalizability. It differs from ordinary generalizability in the sense that domain shift 

generalizability focuses mainly on cross-domain transfer of knowledge while ordinary 

generalizability focuses on generalizing across related task.  Domain shift problem is 

especially critical in scenarios where the model accuracy is not the only effective 

measure of performance success such as in medical imaging task.  

2.6.2.1 Multi-task and Transfer Learning Architectures  

There exist several architectures that can be used for transfer learning and multi-task 

learning. The most popular open source architectures include the following:  

DenseNet, ResNet, EfficientNet, Inception, VGG, MobileNet, and NasNet.  

Densely Connected Convolutional Neural Networks 

DenseNet refers to a densely connected convolutional neural networks which connects 

each layer to every other layer in a feed forward format. Therefore for each layer the 

feature maps of all presiding layers are used as inputs and then its own feature maps 

are used as inputs in the subsequent layers [75].  Densely connected convolutional 

neural networks have several architectures which include: DenseNet169, 

DenseNet201, DenseNet121, DenseNet264. The depth of the neural network 

architecture is determined by the number that appears next to the name. DenseNets 

are advantageous in that apart from strengthening feature propagation, they also 

reduce vanishing gradient problem, reduces number of parameters and promotes 

feature reuse[75][74]. Researchers such as Hassan et al. [74] used DenseNet in 

predicting covid-19 from CT-Scan images.  
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Figure 2.7 shows a 5-layers dense block in which each layer is connected to the other 

presiding layers [75]. X0, X1, X2, X3, X4 represents the first, second, third, fourth, and 

fifth dense blocks respectively. H1 represents the first dense connection in the network 

which is between X1, and X2. H2 represents the dense connection between X1, and X2, 

H3 represents the dense connection between X2, and X3, H4 on the other hand shows 

the dense connection between X3, and X4.  

 

 

Figure 2.7: DenseNet Architecture (Source; [75]) 

 

Residual Networks 

ResNet refers to Residual Networks, it is an improvement of deep convolutional 

network that adds an identity short cut connection that skips some layers. The shortcut 

turns the network into its counterparts’ residual versions[76].  This makes it possible 

for layers to be reformulated as learning residual functions with reference to the layers 

input. The main aim of residual networks is to make deep networks to be trained with 

less complexity while still achieving high performance.  Residual networks have 
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several variants which are: ResNet18, ResNet50, ResNet101, ResNet152. The number 

after ResNet represents the number of layers in the residual network[76]. Mkuti and 

Biswas [60] used ResNet50 for plant disease detection. Algan et al.,[28] used 

ResNet50 and image dataset with noisy labels to classify diabetic retinopahty.  

Figure 2.8  shows residual learning block with the identity shortcut [76].  X represents 

the identity, 𝑓(𝑥) represents the function of the model. 𝑓(𝑥) + 𝑥 show the output of 

combining the model’s function with identify shortcut.  

   

Figure 2.8: Residual Learning Block( Source; [76]) 

Efficient Network 

EfficientNet is network architecture that focuses on model scaling by uniformly 

scaling all the dimensions of height weight and resolution using compound 

coefficient[77]. The compound coefficient ensures that there is balancing in the 

scaling of all dimensions of a network, this balance is attained by using a constant 

scaling ratio. The scaling coefficients are determined by a simple grind search in the 

model. The EfficientNet family has seven architectures namely: EfficeintNetB0, 

EfficientNetB1, EfficeintNetB2, EfficientNetB3, EfficientNetB4, EfficientNetB5, 

EfficientB6, and EfficientB7[77].  The baseline model in the EfficientNet family is 
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the EfficientNetB0. All the other variants are obtained by scaling the EfficientNetB0 

using the compound scaling method[77].  

EfficientNetB7 demonstrated superior performance in the ImageNet dataset during 

experimental trials. Other researchers such as Tymchenko et al.,[30]  used an ensemble 

of three convolutional neural network architectures namely (EfficeintNet-B4, 

EfficientNet-B5, and SE-ResNext50) in diabetic retinopathy classification and 

achieved a Quadratic Weighted Kappa score 92.5%,  [78] used EfficientNet for brain 

tumor classification,  [42]  on the other hand used EfficientNetB3 with an attention 

mechanism to classify remote sensing images. These studies have demonstrated that 

Efficient Nets are among some of the most used network architectures  

Inception Network 

Inception Network was a game changer in convolutional neural networks. Prior to its 

introduction CNN models used to stack layers deeper and deeper hoping to achieve a 

high performance. The Inception network has evolved over time and today there exists 

the following versions of Inception network: InceptionV1 which has filters of multiple 

sizes operating at the same level thus making the network to be a little bit wider than 

deeper[79].  The InceptionV1 was the backbone of the GoogleNet architecture in 

2014. InceptionV2 and Inception V3 were introduced together by [80].  

Inception V2 made the following improvements to Inception V1: first it reduced 

representational bottlenecks by expanding the filter banks of the model thus making 

the model wider than deeper. Second, factorized a 5*5 convolution to two 3*3 

convolutions to reduce computation cost[80]. The Inception V3 extended the 

Inception V2 by adding the following features to the architecture: Batch normalization 

in the auxiliary classifier, factorized 7*7 convolutions, Batch normalization in the 
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auxiliary classifier, RMSProp optimizer, and label smoothing. Label smoothing was a 

regularizing component that prevented overfitting[80].  

Inception V4 modified the stem which consists of the initial set of operations before 

introducing the inception block[81]. This was done by adding specialized reduction 

blocks which are used to change the height and the width of the gird.  The aims were 

to remove unnecessary computational baggage and to make the modules more uniform 

in order to improve on the performance of the models[81].  

Visual Geometry Group Networks (VGGNets) 

Visual Geometry Group Networks (VGGNets) extended Alex Net. It did so by 

increasing the depth of the network using a small 3*3 convolution filters[57]. Figure 

2.9 shows the VGG architecture as proposed by [82] [57]. From the figure it is evident 

that the architecture of the VGG network consists of the following: First, an input layer 

which accepts colored images as inputs in the shape 224*224*3. This is followed by 

a convolution block which consists of the convolutional layers and 1*1 convolution 

filter and Relu. The fully connected block follows thereafter and it has three fully 

connected layers with 4096, 4096, and 1000 neurons respectively. The fully connected 

layers are accompanied by Relu activation function [57]. 

Simonyan and Zisserman [57] record that there are four variants of VGG Networks 

which are: “First, VGG11 which supports 11 weight layers in the model’s 

(convolution layers). Second VGG13 which supports 13 weight layers. Third, VGG16 

which supports 16 weight layers. Fourth VGG19 which supports 19 weight layers. 

VGG19 and VGG16 are the most commonly used architectures of the VGG model”. 

Researchers such as Khan et al. [23] used VGG16 to classify diabetic retinopathy and 

achieved a micro accuracy of 95% and an average accuracy of 83.8%.  
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Figure 2.9: VGG Architecture (Source; [57] [82]) 

 

Liu et al. [65] conducted a study that introduced the concept of hierarchical multi-task 

learning which can aid in discovering shared actions relatedness and action-specific 

feature subspace. The technique adopts an objective function regularized by the trace 

norm and group sparsity terms for joint multiple learning actions. Li et al [83] used 

multi-task self-supervised learning approach to improve the accuracy of deep learning 

models in small scopy datasets. The model is pretrained using a related task then the 

knowledge is transferred to mining useful information from limited training data, thus 

eliminating the need for huge training data sets which is the key goal of meta-learning.  

Jia et al. [84] used multi-agent and meta-learning approaches to develop a deep 

reinforcement learning model that was more scalable and flexible by building on 

previous knowledge. 
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2.6.3 Hyperparameter optimization  

Hyperparameter optimization refers to fine-tuning the hyperparameters to achieve 

better optimization. Hyperparameter optimization goes hand-in-hand with the choice 

of algorithm. The key aim of hyperparameter optimization according to [85] is to 

reduce the loss value in the model. The most commonly used technique in 

hyperparameter optimization are Sequential model-based optimization (SMBO), 

Bayesian optimization, random search, and grid search [19] [86]. Keras tuner is also 

a formidable method for hyperparameter optimization especially where one is using 

the TensorFlow framework[87].  Although some manual tuning of parameters is still 

used, the above-mentioned techniques have proved to be more efficient than manual 

tuning [20]. Random and grid searches are considered to be uninformed of the 

previous evaluations since they don’t pay attention to past results at all. Therefore, 

they may spend a lot of time evaluating bad hyperparameters. 

The Bayesian optimization can tolerate stochastic noise in function evaluations. It uses 

a Gaussian process to quantify the uncertainty of surrogates it builds for the objective 

[20]. Unlike random and grid search, the Bayesian optimizer is informed of past 

evaluation results and they use them to form a probabilistic model mapping 

hyperparameters to a probability of score on the objective function [19].  

Sequential model for hyperparameter optimization was originally proposed for black-

box optimization and it is a formalization of the Bayesian optimizer. It tries to find a 

function f to represent the optimum function [18]. Finding the function f is an 

expensive exercise and thus this approach adopts a surrogate model Ψ and uses it to 

try and approximate f. The surrogate model consumes less time and is less expensive. 

The surrogate model is then combined with an acquisition function to tackle the 

exploitation-exploration dilemma [19]. 
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Keras tuner is a general purpose hyperparameter tuning library that is maintained by 

Keras organization and works on top of TensorFlow. The library has very strong 

integration with Keras workflow however it can still be used in SCKIT learn. Keras 

tuner was developed with the key aim of allowing fast experimentation. Keras tuner 

helps in tuning hyperparameters such as number of layers, number of neurons per 

layer, learning rate, number of epochs, batch sizes, among others[88].  

There are three main optimization methods in Keras tuner package namely Bayesian 

optimization, hyperband optimization, and random search.  Keras tuner has been used 

in image classification by [88], it has also been used by [89] in Natural Language 

Processing. It has also been used in earthquake prediction in long-short term memory 

where the tuner enabled the researchers to get the best model among the candidate 

models [90].    

2.6.4 Ensemble Learning  

Ensemble learning is an umbrella term for methods that combine multiple inducers or 

base learners to make a decision[91]. Ensemble learning is motivated by the desire to 

combine the capabilities of different machine learning algorithms. The premise is that  

a combination of multiple inducers reduces the error rate of single inducer since it is 

likely to be compensated by the other inducers. Inducers can be of any machine 

learning algorithm. Ensemble learning borrows from the human nature of gathering 

different opinions, weighing them and using them to make decisions [91].  

Ensemble methods perform better because of several reasons which include: first 

overfitting avoidance especially when one has small amounts of training data. This is 

so because ensemble learning averages the training hypothesis of all the models thus 

reducing the risk of choosing the wrong hypothesis that fits the training set and fails 
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to fit the test set. Second, computational advantage as result of minimizing the risk of 

being stuck in a local minimum. Third, better representation since by combining 

multiple models the search space is extended thus resulting to a better fit to the data 

space[91]. Ensemble approaches include voting, stacking, boosting, and bagging. 

Voting: this approach involves using more than one machine learning algorithms to 

perform a task such as classification or regression. The base models then engage in a 

voting exercise. Each of the base models is entitled to only one vote.  The model either 

classification or prediction that receives the highest votes, its value is considered to be 

the final value [16]. This approach provides room for the usage of an arbitrary number 

of classifiers.  

Stacking: this involves a layered architecture in which each layer has one or more 

classifiers. “The prediction of a layer is used to extend the original feature vector of 

the corresponding instance. Each of these classifiers is trained with a subset of 

instances.  Given a new instance to be classified, each classifier will produce a 

prediction. The predictions of these classifiers are then combined by majority voting” 

[16]. The resulting prediction is used to extend the feature vector of this instance, and 

this vector is the input for the next layer. Figure 2.10 below demonstrates stacking 

using SVM, KNN, and Decision tree. Where, i represents the input, P_SVM(i), 

P_KNN(i), and P_DT(i) represents the predictions of the SVM, KNN, and Decision 

Tree respectively. P_L(i) represents the output of the first level after majority vote. 

This output is then passed through a decision tree to obtain the final prediction P(i).  
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Figure 2.10: Stacking (Source; [16]) 

Bagging: unlike voting, bagging generates a combination of classifiers from the base 

classifier by manipulating the training dataset. Therefore, this approach involves 

selecting a single base classifier and then calling it multiple times using a subset of the 

training data set [16]. Each of these subsets of the training dataset are used to train the 

base classifier and this is considered to be a single model. The results of each of these 

models are then combined through a combination rule to get the final prediction [16]. 

It can be viewed more like divide and conquer approach. Figure 2.11 illustrates 

bagging approach in which the meta-classifier is using voting combination rule. In this 

illustration a decision tree has been used three times for bagging and then subjected to 

majority voting to get the final prediction.  
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Figure 2.11: Bagging(Source; [16]) 

Boosting: involves creating multiple base classifiers by sequentially assigning new 

weights to the instances of the dataset. In the first phase, all instances have the same 

weights. After the first phase, each iteration adopts a base classifier to the training 

instances with their respective weights [16]. Then “the error is computed and the 

weight of the correctly sorted instances is reduced while the weight of the wrongly 

sorted instances is increased. The final model obtained by the boosting technique is a 

linear combination of several base classifiers, weighted for the best performance”. 

This process can be looped until the desired performance is achieved or until when no 

further improvement can be done [16]. 

2.7 Model Evaluation  

Model evaluation refers to assessing the performance of a model using various 

metrics. Performance evaluation metrics makes it possible for researchers to determine 

how the model has performed in with the training set, validation set, and testing set. 
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Model evaluation metrics vary in terms of what they assess in a classification model. 

The choice of the metric to use is highly influenced by the nature of task, the dataset 

used, the goal of the model, and also the environment setup.  

2.7.1 Confusion Matrix  

A confusion matrix is a performance measurement of machine learning models that is 

used in classification, regression, and reinforcement learning. It consists of table with 

four different values of predicted and actual values. A confusion matrix has two 

dimensions as shown in figure 2.12,  the first dimension is the actual class of the object 

while the second dimension is the class that the classifier predicts[92]. There are 

several metrics that can be computed from the confusion matrix, they include: 

Accuracy, Recall, Precision, F1_score, Area under the Curve (AUC), Receiver 

Operating Curve (ROC).  

 

Figure 2.12: Confusion Matrix (Source; [92]) 

True Positive (TP): refers to the cases in which the model predicted a particular class 

and in real sense the object belongs to that class. In the case of multi-class 

classification, the object is classified in the right class. 
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True Negative (TN): this is where the model predicts the class as negative and it is 

actually negative. In the case of multi-class classification, the object is classified in 

the right class. 

False Positive (FP): this is where the model predicts an object as positive but in real 

sense it is negative. Or in case of multi-class classification, the object is classified in 

the wrong class.  

False Negative (FN): The model predicts an object as negative and in real sense it is 

positive. Or in case of multi-class classification, the object is classified in the wrong 

class.  

Accuracy  

Accuracy refers to the percentage of total accurate predictions which is based on the 

positive and negative classes classification. Accuracy is only reliable when you have 

a balanced dataset which is dataset with equal number of samples in each class[36]. 

This concept of unreliability of accuracy with unbalanced data is especially essential 

in medical imaging task where it is costlier to fail to detect a disease that it is to take 

a healthy person through a series of tests. Accuracy can be computed using Equation 

2.4.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁 ÷ (𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃) 

Equation 2.4 

Recall/ Sensitivity: This is also known as the True Positive rate, it is the number of 

correct positive results divided by the number of all relevant samples.  Recall 

measures the model’s ability to detect positive samples. It is computed using Equation 

2.5 [93]:  
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Sensitivity= (TP)/(TP+FN) 

Equation 2.5 

Specificity: It is also known as the True Negative Rate (TNR). It is computed using 

Equation 2.6 [93] 

Specificity= (True Negative) + (True Negative+ False Positive) 

Equation 2.6 

Precision: It is the ration of truly classified number of samples and the given sum of 

True Positive and False Positive. Equation 2.7 shows how precision is computed [93] 

.  

Precision= True Positive/ (True positive+ False Positive) 

Equation 2.7 

F1-Score: it is the harmonic mean of recall and precision, it has values between 0 and 

1 where 0 is the lowest and 1 is the best score. High precision but lower recall, gives 

you an extremely accurate, but it then misses a large number of instances that are 

difficult to classify. The greater the F1 Score, the better is the performance of the 

model.  Equation 2.8 shows how F1-Score is computed. 

F1_score= 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 +𝑅𝑒𝑐𝑎𝑙𝑙
  

Equation 2.8 (Source; [94]) 

Area under the Curve (AUC): refers to the degree of separability between classes. 

The higher the AUC score the better the model has learned. The AUC values also 

range from 0 to 1 where 0 is the lowest and 1 is the highest[95].   When the AUC is 1 

it means that the model is able to perfectly distinguish between all classes. When the 

AUC is between 0.5 and 1 it means that there are higher chances that the model is able 
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to distinguish between classes. This is so because the model is able to detect more 

number of True positives and True Negatives. Where the AUC is 0.5 it means that the 

classifier is not able to distinguish between positive and negative class points. This 

shows that the classifier is either predicting a random class or a constant class for all 

data points[95].    

Receiver Operating Curve (ROC): Refers to when the True positive rate (TPR) is 

plotted against the False Positive Rate (FPR).  The ROC curve has two very critical 

measures of performance which are the Mirco-average and macro-average. Macro 

averaging reduces multiclass predictions to multiple sets of binary classifications[96]. 

It calculates the corresponding metric for each binary case and then averages the 

results together.  Take an instance of multiclass classification with three classes A, B, 

and C.  

“Macro-average reduces the problem to numerous all versus one comparison.  

The truth and estimate columns are recoded such that the only two levels 

are A and other. The recorded columns are then used to calculate precision, 

with A being the “relevant” column. This process is repeated for the other 3 levels to 

get a total of 4 precision values. The results are then averaged together”[97]. Equation 

2.9 shows the formula representation of K classes in Macro-Averaging. 

 

Equation 2.9 (Source; [97]) 

where PR1 is the precision calculated from recoding the multiclass predictions down 

to just class 1 and other. Macro averaging is suitable for a balanced dataset since all 

classes get equal weight when contributing their portion of the precision value to the 
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total (here 1/4). Thus huge amounts of class imbalance can highly affect the reliability 

of this metric[97]. To address this a weighted macro average can be used since it 

calculates weights from the frequency of the class in the truth column. Equation 2.10 

shows the weighted Macro-Averaging. 

[97] 

Equation 2.10 (Source; [97]) 

Micro-averaging on the other hand “treats the entire set of data as an aggregate result, 

and calculates 1 metric rather than k metrics that get averaged together. For precision, 

this works by calculating all of the true positive results for each class and using that 

as the numerator, and then calculating all of the true positive and false positive results 

for each class, and using that as the denominator” as shown in Equation 2.11 [97].  

 

Equation 2.11 

In this case, rather than each class having equal weight, each observation gets equal 

weight. This gives the classes with the most observations more power.  

2.7.2 Quadratic Weighted Kappa Metric (QK) 

It is a metric that measures the level of disagreement between actual and predicted 

labels. “The Quadratic kappa metric can be computed using the three matrices namely 

Expected Matrix (E), Output Matrix (O), and Quadratic Weighted Metric (W)” [18]. 

The Quadratic Weighted Kappa Metric can be computed using the following process: 

The First step involves “calculating the Expected Matrix (E), by taking the outer 
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products between the actual labels vector and target labels vector. Second, the output 

matrix is constructed by building a confusion matrix of actual labels and predicted 

labels”. Third the weighted matrix is computed using the formula in the Equation 2.12 

[18].  

 

Equation 2.12 

Where i is the actual label, j is the predicted label, and k is the number of classes  

Fourth, normalize the expectation matrix (E) and output matrix (O) by dividing them 

by their sum. Fifth, calculate the weighted kappa using Equation 2.13  [18]. 

 

Equation 2.13 

Where “num is the sum of elements obtained using element-wise multiplication 

between weight matrix (W) and output matrix (O), and den is the sum of elements 

obtained using element-wise multiplication between weight matrix (W) and 

expectation matrix (E)” [18]. QWK can range from -1 to 1 where 1 is perfect 

agreement while -1 is total disagreement between actual labels and predicted 

labels[18]. 

2.8 Conceptual Framework 

A conceptual framework shows the relationship between various concepts in a 

research. This relationship is depicted using the independent and dependent variables. 

In this study the researcher experimented on how transfer learning and hyperparameter 
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optimization affects domain-shift generalizability and optimal performance of models. 

Figure 2.13 shows the conceptual framework.   

 

 

 

 

 

 

Figure 2.13: Conceptual Framework 

2.9 Summary  

The review of literature in this chapter aimed at first analyzing related works on how 

deep learning and meta-learning has been used in detecting and classifying diabetic 

retinopathy. Second, exploring meta-learning techniques used in classification tasks. 

Third, analyzing model testing and validation techniques that are currently being used 

in this field. The review of literature has revealed that indeed meta-learning techniques 

have been used by other researchers in detecting diabetic retinopathy. The most used 

meta-learning technique is transfer learning which involves leveraging on a previously 

acquired knowledge from pre-training models with the ImageNet dataset. There exist 

neural network architectures that can be used for transfer learning with most 

commonly used ones being; EfficinetNets, DenseNets, ResNets, VGGNets, and 

Inception Nets. Transfer learning has proofed to be more superior than standard deep 

learning. However, the existing models are still challenged in domain shift 

generalizability since they do not do proper model optimization to achieve high 

performance in classifying diabetic retinopathy to its five classes. The literature also 

revealed that apart from transfer learning other meta-learning techniques include 

multi-task learning, self-optimization, and ensemble learning. Further, the literature 

• Transfer Learning 

• Two-Level 

Optimization 

Domain Shift 
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Improved performance 

of the Model 

Affect 
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revealed that there exists metrics such as Accuracy, Precision, Recall, F1-score, Area 

under the Curve, Quadratic Weighted Kappa Metric, and Receiver Operating Curve 

that can be used to evaluate performance of a model during validation and testing.  
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3. CHAPTER THREE 

METHODOLOGY 

3.1 Introduction  

This chapter discusses the methodology, the dataset, and the tools that the researcher 

used to achieve the research objectives. It explains the research process, research 

design, data acquisition, model development, model validation and model testing.  

3.2 Research Process  

Research process refers to the series of steps that a researcher undertakes in their 

research in order to achieve their objectives. In this research, the research process had 

three stages as per the research objectives. The first step involved analyzing the 

existing deep learning and transfer learning models for classification of diabetic 

retinopathy. The aim of this step was to first appreciate what has been done so far and 

then critique in terms of research gap these existing works. This also helped the 

researcher in choosing the neural network architecture to use for transfer learning. The 

second step which covered objective two involved redesigning the identified transfer 

learning model and tuning its training hyperparameters using two-level optimization. 

This second step has activities such as model development, model training, and 

hyperparameter tuning to achieve optimal performance.  The final step involved 

validating and testing the developed model. Figure 3.1 shows the research process.  
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Figure 3.1: Research Process 

3.3 Research Design  

Research design is the overall strategy that the researcher uses to address the research 

problem. Akhtar [98] argues that research design is the glue that holds all the 

components of a research together. Research design not only envisages the choices of 

methods, approaches, and techniques but also the logical foundation for considering 

those methodologies. The choice of research design is influenced by the nature of 

evidence required to answer the research questions[98]. Therefore, a suitable research 

design is one which encapsulates all the processes to be involved in the research in 

order to answer the research questions. A suitable research design should also contain 

at least the following critical elements: the statement of the problem, procedures and 

techniques to be used for data collection, study population, data processing and 

analysis methods.  



66 
 

One of the most popular research designs in the field of computing and engineering is 

the experimental research design. [99]defines experimentation as “a recording of 

observations, quantitative or qualitative, made by defined and recorded operations and 

in defined conditions, followed by examination of the data, by appropriate statistical 

and mathematical rules, for the existence of significant relations”. Experimental 

methods build on technical insights and technologies and aims at bringing a 

contribution to the advancement of these technologies[99]. Experimental research 

design is further grouped into three categories namely Pre-experimental, true 

experimental and Quasi experimental research designs.  

The researcher used true experimental research design in this research since the entire 

process of developing, testing and validating the model was an experiment. The 

research also involved the use of statistical analysis to determine cause and effect 

which is a major characteristic of true experimental design[100].The choice of this 

design was informed by the nature of the research and  previous empirical studies that 

developed models for detection of diabetic retinopathy[18][17][23]. 

3.4 Identification of Best Architecture for Transfer learning Model 

The researcher used literature review to address objective one. Literature review 

involved identifying, selecting, and critically appraising research in order to answer a 

research question [101]. This review involved two approaches: the first one was a 

systematic literature review of how meta-learning has been used in classification tasks. 

The second approach was a literature review in which the researcher reviewed research 

articles on existing deep learning and meta-learning models with an aim of identifying 

the techniques used in these existing models. The articles reviewed were sourced from 

high-end journals and were not more than ten years old. The researcher also reviewed 
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related works that specifically apply the meta-learning or deep learning techniques in 

detecting diabetic retinopathy. This review is presented in chapter two.  

There exist multiple architectures that can be used for transfer learning. The most 

commonly used architectures in literature are; InceptionV3, Residual Networks 

(ResNet), Densely Connected Networks (DenseNet), EfficentNet family, and Visual 

Geometry Group Networks (VGGNet). To determine the best architecture to use in 

this research the researcher conducted a comparative analysis of ResNet50, 

DenseNet169, EfficientNetB0, and VGG16 architectures. The aim was to determine 

which architecture is superior in classifying fundus image under the same 

environmental set up.  

The comparative analysis involved setting up an experiment in which the architectures 

were trained using the Indian diabetic retinopathy and the Aptos 2015 datasets. The 

datasets were converted into 4-class classification problem using the Messidor dataset 

classification as the benchmark. The choice of the dataset in this section was informed 

by the fact that the aim of the comparative analysis was to determine which of the 

architectures is superior than the others. Other researchers such as [31] [27] have used 

the same dataset benchmarks. The overall dataset was small in size consisting of 4125 

images, this provided an easier way to compare the architectures without too much 

training overhead.  

The images were then pre-processed using TensorFlow library which involved 

resizing them to shape 224*224*3 to fit the default input shape of all architectures 

under consideration. Data augmentation that was done on this model involved: 

horizontal random flip, random rotation, and random translation. The aim of data 
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augmentation in these experiments was to several representations of the same image 

so that the model can be able to analyze an image from multiple viewpoints[102].  

The architectures were then trained in Google Collaboratory pro with Nvidia GPU and 

TensorFlow library which has Keras in its back end. The training involved two 

approaches which were, first, deep learning approach, this consisted of training the 

architecture for 50 epochs without the transferred ImageNet weights. The second 

approach was transfer learning approach which involved training the architecture with 

transferred weights.  

 

Algorithm  1: Deep Learning Approach 

Algorithm 1 shows the deep learning algorithm that was used to train the architectures 

without the transferred weights. Therefore, the algorithm shows how the architectures 

were trained from scratch. The following model hyperparameters were set, Adam 

optimizer with the default learning rate of α = 0.001, categorical cross-entropy loss 

Input →Fundus Images belonging to 4 classes (DR0, DR1, DR3, DR4) 

Output →A model that classifies fundus images into the four classes  

1) Load the dataset  

2) Data pre-processing  

➢ Split 80% training and 20% Validation (Xtrain Yvalidation) 

➢ Resizing images  

➢ Data Augmentation  

❖ Horizontal random flip  

❖ Random rotation  

❖ Random Contrast  

❖ Random translation (h-factor=0.1, W_factor=0.1) 

3) Import the architectures without the weights= (EfficientNet B0, DenseNet169, ResNet50, 

VGG 16) 

4) Set the model parameters (Optimizer, Loss function, Metrics) 

While α=0.01 

 For epochs= 1 to 50 do  

  Update the model parameters for each batch of (Xtrain Yvalidation) 

  Assess the Accuracy and Loss  

 End  

End  
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function, and Accuracy metrics.  The models were trained for 50 epochs and their 

performance was recorded using model checkpoints.  

 

Algorithm  2: Transfer Learning Approach 

Algorithm 2 shows the transfer learning approach. The imported neural network 

architectures had been initially pre-trained using the ImageNet dataset. The 

architectures were then restructured to make them suitable to the task of detecting and 

classifying diabetic retinopathy. Restructuring of the architecture involved rebuilding 

the top layer as follows: A Global Average pooling 2D layer, a Batch Normalization 

layer, dropout layer with a dropout rate of 0.2, a dense layer as the output with four 

neurons and SoftMax activation function, were added. The base models were unfrozen 

 

Input →Fundus Images belonging to 4 classes (DR0, DR1, DR3, DR4) 

Output →A model that classifies fundus images into the four classes  

1) Load the dataset  

2) Data pre-processing  

➢ Split 80% training and 20% Validation (Xtrain Yvalidation) 

➢ Resizing images  

➢ Data Augmentation  

❖ Horizontal random flip  

❖ Random rotation  

❖ Random Contrast  

❖ Random translation (h-factor=0.1, W_factor=0.1) 

3) Import pre-trained architectures with the weights= (EfficientNet B0, DenseNet169, 

ResNet50, VGG16) 

➢ Rebuild the top layer  

➢ Unfreeze the base model  

4) Set the model parameters (Optimizer, Loss function, Metrics) 

While model.trainable=true 

While α=1ⅇ-5(low learning rate) 

 For epochs= 1 to 50 do  

  Update the model parameters for each batch of (Xtrain Yvalidation) 

  Assess the Accuracy and Loss  

 End  

  End  

            End  
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by setting the trainable function of the models as true. The following model parameters 

were used for all the architectures: Adam optimizer with a learning rate of (α=1ⅇ-5), 

categorical cross-entropy loss function, and a batch size of 32. The architectures were 

trained for 50 epochs and the performance was recorded.  The performance results of 

these architectures were then compared to determine the best architecture of the best 

architecture.  

The detailed results of this comparative study have been discussed in chapter 4 section 

4.2 and a paper containing the results of this comparative study has been published 

(see appendix 4).  

3.5 Data Sourcing  

The researcher used a secondary datasets of eye fundus images which was obtained 

from Kaggle repository. The dataset is known as the EyePACs Diabetic retinopathy 

dataset which has 35126 colored fundus images. Eyepacs is an organization that 

specializes in screening of diabetic retinopathy, selling screening cameras, and 

providing programs that enable patients to manage diabetic retinopathy. The 

organization also conducts research on diabetic retinopathy management in 

partnership with University of California Berkeley[103]. Therefore, the dataset is 

labeled by experts in the area of diabetic retinopathy. Thus it has been used as 

benchmark by multiple studies such as [18][36][23] 

The dataset contains fundus images belonging to the five classes of diabetic 

retinopathy. The distribution of the dataset was as shown in Table 3.1.  
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Table 3.1: Dataset Distribution 

Level  Number of Images  Label used in the model 

No DR 25810 Level_0 

Mild DR 2443 Level_1 

Moderate DR 5292 Level_2 

Severe DR 873 Level_3 

Proliferative DR 708 Level_4 

 

The choice of secondary dataset over primary data was informed by previous studies 

which also used secondary data [10] [11] [12] [13]. Also, primary data for this field is 

quite time intensive and expensive to acquire. After acquiring the dataset the 

researcher did data pre-processing.  

Data pre-processing refers to the process of preparing raw data and making it suitable 

for training in machine learning. The motivation behind data pre-processing is the 

reality that much of the data collected from the real world is not always in a form ready 

to be used for training. Data pre-processing can help a machine learning model to 

optimize its performance[104]. This is so because pre-processing eliminates noise in 

the data and only provides the machine learning model with what is relevant for it to 

learn. The specific activities conducted under data pre-processing vary from one 

model to another and they are influenced by several factors such as: nature of the 

dataset, nature of the task, capability of the algorithm used, training pipeline, among 

others[104].  
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This research is an image processing task; therefore, data pre-processing activities 

followed the conventions of image processing. The first step involved resizing the 

images into 512*512 pixels.  Second, the dataset in this study was imbalanced in the 

sense that the No diabetic retinopathy class consisted of more than 50% of the entire 

dataset. This is a true reflection of real-world data where out of 100 random people 

tested there is likely to be more people without diabetic retinopathy than those with 

diabetic retinopathy.  

To address this challenge selective data augmentation was done. This involved 

augmenting the minority classes only (Level 1 to Level 5) with the aim of increasing 

their instances. The specific augmentations done to these classes were: random flip, 

random rotation, random zoom (height_factor = (-0.2, 0.3), width_factor (-0.2, -0.3), 

interpolation= ‘bilinear’, random contrast, and random translation. Third, the dataset 

was split into training set (70%), validation set (10%), and testing set (20%). Fourth, 

one-hot encoding of the three sets of the data was done.  

3.6 Model Development  

The researcher chose the VGG16 architecture based on the results obtained from the 

comparative study. Figure 3.2 shows a code snippet that the researcher used to import 

the VGG16 architecture. The code specifies that the weights to be used are the 

ImageNet weights. 

 

Figure 3.2: Code for importing VGG16 Architecture 

 Figure 2.9 shows visual representation of the VGG16 architecture, while Figure 3.3 

shows a detailed layer-by-layer VGG16 architecture. The architecture has two main 
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sections namely the convolution block and the fully connected layer block. The 

convolution block consists of the input layer, Convolutional layers, Rectified Linear 

Unit (ReLu) activation function, and max pooling layers. The fully connected layer 

section consists of dense layers, output layer, Rectified Linear Unit (ReLu) activation 

function, and Softmax activation function.  Figure 3.3 shows a layer-by-layer 

architecture of the VGG16 network. This architecture is the default architecture before 

any modification has been done to it.  

 

Figure 3.3: Layer-by-layer VGG16 Architecture before layers’ Modification   
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This default architecture accepts input of size 224*224*3 although researchers can 

adjust the input shape. In this case the input shape was adjusted from 224*224*3 to 

512*512*3. The default architecture also classifies images into 1000 classes since it 

has been pretrained using the ImageNet dataset. Therefore, the default architecture 

was not appropriate for classifying diabetic retinopathy since DR classification is a 5-

class classification problem. To address this, the researcher rebuilt the fully connected 

part of the network and also added an attention model to the network.  

The network was rebuilt as follows: First an attention model was added as part of the 

Image sequential layer, the role of the attention model was to help the model in 

focusing on the critical features of the fundus images that differentiate the image of 

one class from another. The attention layer was customized to use self-attention where 

the query comes from the input. Self-attention was considered to be suitable since it 

will provide the model with capabilities to automatically define what in the input 

should be given attention [105]. This not only increases the classification capability 

of the model but also makes the model to be more robust. Thus, making it more useful 

in real world applications where input images can vary in size, contrast, shape, 

background noise etc.  

An attention mechanism has been used by researchers such as[106] have used attention 

mechanism  to increase accuracy in text classification, however, the researchers placed 

the attention mechanism in the classification part of the network, thus the attention 

mechanism did not help in features extraction. Others such as [107] used a dual 

attention mechanism involving channel attention and spatial attention to classify 

hyperspectral images. The model achieved a good performance. However, in both 

cases the attention mechanism used is not data-driven, thus there is need to use an 

attention mechanism that is data-driven. This forms the basis under which the 
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researcher in this study settled on using a self-attention mechanism and placed it as 

part of the image sequential model in the modified VGG16 architecture.  

Second, a Global average pooling layer was added at the beginning of the fully 

connected block. The role of this global average pooling layer was to enforce 

correspondence between feature maps and class categories. The layer does this by 

generating one feature map for each corresponding category of the classification task 

in the last convolution layer[108]. The feature maps are generated by calculating the 

average output of each feature map in the previous layers. It prepares the model for 

classification and reduces the complexity of the model by reducing the number of 

trainable weights since it has no trainable parameters[109]. Also, The Global average 

pooling layer avoids overfitting since it does not have any parameters that need 

optimization, this makes it more suitable compared to fully connected layers[108].  

Third, a Batch Normalization layer was added after the Global Average pooling layer. 

Batch Normalization enables faster and more stable training of the network.  It 

achieves this by making the optimization landscape significantly smoother thus 

inducing more predictive and stable behavior of gradients[110].  This impact of batch 

normalization on the training process informed the researcher’s decision to include it 

as part of the network.  

Fourth, a dropout layer with a dropout rate of 0.2 was added below the batch 

normalization layer. The role of the dropout layer was to regulate the network training 

process. It does so by dropping some neurons in the layers during training. The number 

of neurons dropped are determined by the dropout rate which represents the percentage 

of neurons to be dropped. The dropout rate is a hyperparameter that is usually tuned 

by researchers to optimize the network. A dropout rate of 0.2 means 20% of neurons 
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will be dropped. This plays a very critical role in preventing overfitting as a result of 

the network learning the noise in the images.  

Fifth, the final classification layer with a SoftMax activation function was added. The 

classification layer was assigned 5 neurons in order to classify diabetic retinopathy 

into the five classes. A SoftMax activation function was used since it normalizes the 

output converting them into probabilities, therefore, each output of SoftMax is 

interpreted as the probability of membership for each class[111]. This, therefore 

makes SoftMax suitable for multi-class classification problem.  Related works in 

literature have also used a SoftMax function [18], [23], [17]. The classification layer 

is the final output layer of the network and thus it forms the end of the network.  

Model Training  

Model training involved several phases as depicted in figure 3.4.  

Model training started with using a pretrained model for feature extraction. The pre-

trained VGG16 model was imported from Keras library. The model had been pre-

trained using the ImageNet dataset which is dataset consisting of over 1.2 million 

images of objects grouped into 1000 classes. The ImageNet dataset has been used 

previously to train other transfer learning architectures studied in section 4.4.3. This 

is due to the fact that the dataset is a general-purpose dataset whose features and 

weights can be used in transfer learning to train other domain specific models.  The 

Eyepacs dataset was split into 70% training, 20% testing and 10% validation. This 

split was informed by previous researchers such as [17][18]who have used almost 

similar split.  
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Figure 3.4: Model Development and Training 

Two-Level optimization  

This involved optimizing the network in two key levels. The first level involved tuning 

some hyperparameters using Keras tuner and manual tuning. The hyperparameters that 

were tuned using this approach included: learning rate range, drop-out rate, gradient 

clipping, number of dense layers, number of neurons in the dense layers, AUC 

threshold, data augmentation height and width factors. The second level of 

optimization involved providing the model with a progressive batch size starting with 

small batch size of 8 in the top layer training, followed by batch size of 16, 32, and 64 

in the full model training 1st, 2nd, and 3rd sessions respectively. Once provided with the 

batch size the model would automatically tune the learning rate by choosing the most 

optimal learning rate from the range 1e-2 to 1e-6 for a given batch size. Therefore, the 

model did self-evaluation through checkpoints during the gradient steps and adjusted 
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the learning rate to minimize loss and increase convergence which then results to high 

performance. This approach was informed by the fact that the two hyperparameters 

(learning rate and batch size) were discovered to be highly affecting the performance 

of the network.  

Kandel and Castalli [112] studied the relationship between batch size and learning rate 

and they discovered that during the training process the network may need different 

batch sizes at different instances. [113][112] further discovered that the right batch 

size with the wrong learning rate will lower the performance of the model. However, 

the researchers did not hit a balance between the right batch size and the optimal 

learning rate. To address this unresolved challenge the researcher used dynamic 

learning rate and progressive batch size.  

This involved starting with a small batch size of size 8 during feature extraction, then 

progressively increasing the batch size to 16, 32, and finally 64 in different training 

sessions. During these training sessions, the learning rate was set to range of 1e-2 -1e-

6. Therefore, during training the model would automatically choose the most optimal 

rate for the specific batch size, as well as adjust the learning rate from one epoch to 

another through observing the improvement in the gradient steps towards the local 

minima while still considering the global convergence.  

Figure 3.5 shows two-level optimization architecture.  
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Figure 3.5: Two-Level Optimization 

The second phase involved extracting features from the EyePacs dataset. This was 

done by freezing the convolutional block of the VGG16 architecture and only training 

the rebuilt fully connected layer block with Eyepacs dataset. The model was trained 

for 40 epochs with a batch size of 8. This made it possible for the new model 

architecture to extract important features from the dataset. The extracted features were 

useful in the next phase of training.  In doing so the model used Adam optimizer, 

categorical cross-entropy loss function, and gradient clipping. The model used two-

level optimization as illustrated in Figure 3.5.  
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The aim of feature extraction was to get a learning function θ∗, which contains all the 

information the model needs to know to solve the task. The algorithmic representation 

of this is as follows:    

θ∗ = arg max θ log p(θ|Dmeta−train)  

Equation 2.2 (Source; [4] [61]) 

The third phase of training involved fine-tuning the model by unfreezing the 

convolutional block. The weights obtained by the fully connected block from the 

feature extraction phase are used together with the ImageNet weights stored in in the 

convolutional block. The model is trained for three phases of 40, 20, and 20 epochs 

respectively with two-level optimization. The progressive batch-size was set at 

sizes16, 32, and 64 for the three phases. Fine-tuning the parameters on the training 

task of each meta-learning helped to achieve meta-optimization and adaptation as per 

the following equation 3;    

φ ∗ = arg max φ log p(φ|D tr, θ  

Equation 2.3 (Source; [13]) 

Training using cycles was essential because according to Kandel and Castalli [112] a 

machine learning model should start training with a small batch size so that the model 

can extract relevant features from the data in the first phases of training. However, 

using a small batch size all through the model training will increase training time and 

reduce convergence. Therefore, [112] recommends that the batch size be increased as 

the model approaches convergence so that it can converge.  

The cycles were settled at based on two main reasons: first the training of top-layer 

only is standard practice in transfer learning to help extract features from the dataset 
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it has been previously used by researchers such as [19][18]. Second, the performance 

of training and validation curves informed whether a new cycle is needed or not. 

Where both the training and validation curves achieve almost a flat curve as is the case 

in figures 4.6 and 4.8, then a new training cycle is necessary to overcome the curve. 

Also, where both training and validation curves demonstrate potential progress by not 

converging as is the case in figure 4.7, then a new cycle is needed to achieve optimal 

performance. Else if only the validation curve achieves a flat curve as is the case in 

figure 4.9 then this means that the model has achieved optimal performance and thus 

a new cycle is not necessary. Further training in this case would result to overfitting.   

3.7 Model Validation  

Model validation followed the same approach used in previous works by  

[17][18][23][36][35]. In this approach, the model is evaluated using the validation 

split. The aim is to find the best model parameters that give optimal performance and 

generalize well with the validation split. Then the best model is tested using the testing 

set and the performance is recorded. This approach was useful since it helped in 

determining optimal model hyperparameters for both manual tuning and automatic 

model hyperparameter tuning. The approach is also reliable since the model is not 

subjected to the testing data, therefore, the model’s generalization ability can easily be 

evaluated based on how well the model performs on the test data.   

3.8 Model Testing and Evaluation 

Model testing involved subjecting the model to the unseen testing dataset which was 

created during the training: validation: Test split of the dataset. Testing evaluates how 

well the model generalizes with the testing dataset. It is the testing results that formed 

the final model results. The testing approach used here was informed by previous 

researchers such as  [17][18][23][36][35][28] who used the same approach.  
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Model evaluation is a critical part of the overall research since it helps in knowing 

how well the model has performed. The researcher used the following metrics to 

evaluate the performance of the model: Accuracy, Precision, Recall, F1-Score, 

Quadratic Weighted Kappa Metric, and Area Under the Curve (AUC). The researcher 

used more than one evaluation metric since researchers such as Qummar et al [17], 

[18], and [23] have recorded that the imbalanced nature of the Eyepacs dataset makes 

accuracy an unreliable performance evaluation metric. Although the researcher 

addressed the problem of data imbalance through augmentation, it was important to 

guarantee the validity of the model, thus the researcher considered the other evaluation 

metrics together with accuracy. 

Recall also known as sensitivity was used to measure the model’s ability to detect 

positive samples. Precision metric shows the ratio of correctly classified positive 

samples (True Positive) to a total number of classified positive samples. F1-score 

shows the harmonic mean between Precision and Recall[93]. Area under the curve 

depicts the degree of separability between classes, the higher the AUC the better the 

model has learned. Quadratic weighted Kappa metric illustrates the level of agreement 

between the predicted label and the ground truth[18]. Chilukoti et al [18] further 

argues that Quadratic weighted kappa metric is an essential metric in medical 

classifications since it shows how well two rater agree on the classification.  

3.9 Tools and Techniques used  

The researcher used the following tools, platforms, and techniques: Google 

Collaboratory pro with Nvidia GPU, Python programming language, TensorFlow 

Library, Keras, Keras Tuner, Transfer Learning, VGG16 architecture, HP EliteBook 

Core i5 laptop, and Google Drive storage. Google Collaboratory pro was chosen 
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because it offers cloud-based platform notebooks for coding in python. This platform 

also has a backend Nvidia GPU and high RAM.  

3.10 Ethical Considerations  

This researcher used secondary dataset and did not use any human respondents all 

through the research process. The researcher acquired a permit from NACOSTI since 

the model is expected to be used by people, the researcher also acquired a research 

approval letter from the Board of Postgraduate Studies (BPS), Murang’a University 

of Technology. A copy of the NACOSTI Permit is attached as Appendix 5. Also, a 

copy of the research approval letter from BPS is attached as Appendix 6.  

3.11 Summary  

This chapter outlines the methodology used to achieve the intended research 

objectives. The chapter further discusses the research process used starting from 

choice of best architecture, data acquisition clearly explaining the dimensions of the 

data, then data pre-processing which involved series of steps taken to prepare the data 

for training purposes. The chapter further outlines model development which 

elucidates all the improvements that were done to the model’s architecture. This is 

followed by model training which discusses how the model was trained and how two-

level optimization was used. Then model validation which discusses how the model 

was validated. Finally, model testing and evaluation which shows how the model was 

tested and the various evaluation metrics that were used in testing the model.   
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4. CHAPTER FOUR 

RESULTS AND DISCUSSION 

4.1 Introduction  

This chapter presents findings of the research conducted. The evaluation metrics 

discussed in chapter three have been used to analyze performance of the model. The 

chapter also presents the choice of suitable transfer learning architecture, the algorithm 

for the improved model, the architecture of the model as well as the hyperparameters 

that gave the optimal output. The chapter finally discusses the findings and their 

impact  

4.2 Identification of Best Architecture for Transfer learning Model  

The comparative analysis of existing transfer learning architectures was conducted 

using the algorithms in chapter 3, Algorithm1 shows the deep learning approach in 

which no pre-trained weights were transferred while Algorithm 2 shows the transfer 

learning approach which uses weights pre-trained on the ImageNet dataset. The aim 

of this analysis was to determine which architecture is superior compared to the others 

in the same environmental setup.  The results were as follows:  

4.2.1 Model Parameters  

The models exhibited the parameters shown in Table 4.1. These model parameters are 

obtained from the architecture and can be viewed by printing the model summary. 

Trainable parameters refer to parameters which can be used to generate model 

weights. Trainable parameters influence the performance of a model while non-

trainable parameters are parameters that cannot change even when training on a new 

dataset happens.  
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Table 4.1: Comparative Analysis of Models' parameters 

Model 

Architecture  

Deep Learning (DL) 

Approach  

Transfer Learning 

(TL) Approach  

Difference 

between 

TL and DL 

trainable 

parameters  

Total 

Parameters 

Trainable 

Parameters  

Total 

Parameters  

Trainable 

Parameters  

EfficientNetB0 4, 054, 695 4, 012, 672 4, 059, 815 4, 015, 232 2560 

ResNet50 23, 595, 

908 

23, 542, 

788 

23, 604, 

100 

23, 546, 

884 

4096 

DenseNet169 12, 649, 

540 

12, 491, 

140 

12, 656, 

196 

12, 494, 

468 

3328 

VGG16 14, 719, 

301 

3589 14, 719, 

301 

14, 718, 

277 

14,714,688 

 

The parameters show that different architectures have different number of total 

parameters and number of trainable parameters. This difference is directly related to 

the number of convolution layers, number of dense layers, and the number of neurons 

in the dense layers and the convolution layers.  Layers such as Max pooling layers do 

not have any parameters. The more the number of neurons a layer has the more the 

parameters the layer is going to have.  It is also evident that the transfer learning 

approach increases the number of trainable parameters. This is as a result of the 

unfreezing of the convolution layers.  Therefore, in transfer learning the model is able 

to easily and quickly learn patterns in the dataset unlike the deep learning architecture. 

VGG16 demonstrates that much of its trainable parameters are found within the 

convolution block of the architecture and that’s why the deep learning approach has 

generated very few trainable parameters for VGG16.    

4.2.2 Comparison of the performance achieved by the Models  

To assess the performance of the architectures, the researchers used accuracy metric. 

This was chosen as the only metric since the aim was to determine the best architecture 



86 
 

that can be modified to make the final model. The performance of the models was as 

per the summary presented in Table 4.2.  

Table 4.2: Comparison of the four models in both deep learning and Transfer 

learning accuracies. 

Model  

Deep Learning 

Accuracy % 

Transfer Learning 

Accuracy %  

EfficientNetB0 79.03 80.12 

DenseNet169 75.39 83.15 

ResNet50 77.70 81.33 

VGG16 73.78 84.12 

 

The results of the experiments show that in all models, Transfer learning achieved 

better performance compared to deep learning. This is mainly due to the fact that, in 

transfer learning the models were able to leverage on knowledge acquired from the 

ImageNet dataset. This performance difference has been depicted in the accuracy 

curves for both approaches.  Figure 4.1 represents the accuracy curves for EfficientB0.   
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Figure 4.1: EfficientNetB0 Deep Learning and Transfer Learning Accuracies 

From these curves it is evident that transfer learning is able to achieve a high 

performance within a very few epochs unlike deep learning. EfficientNetB0 managed 

to achieve an accuracy of 75.15% for the first 15 epochs in transfer learning, while 

deep learning achieved 73.58% for the same 15 epochs.  

Figure 4.2 shows that DenseNet169 also had a high performance in transfer learning 

all through the training cycle. 
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Figure 4.2:  DenseNet169 Deep Learning and Transfer Learning Accuracies 

Figure 4.2 shows that within the first 15 epochs the model was able to achieve a 

validation accuracy of 81.45% for transfer learning while deep learning achieved a 

validation accuracy of 70.6%. The power of transfer learning in this model has also 

been depicted by the high validation accuracy of 76.24% achieved within the first 

epoch of transfer learning as compared to deep learning which achieved 16.48% 

validation accuracy.  

Figure 4.3 shows ResNet50 Deep Learning and Transfer Learning Accuracy curves. 
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Figure 4.3 shows that ResNet50 achieved an accuracy of 79.03%, and 12.3% for 

transfer learning and deep learning respectively in the first epoch. The accuracies 

registered with the first 15 epochs were 80.61% and 73.58% for deep learning and 

transfer learning respectively.  

VGG16 represented in Figure 4.4 also showed a similar pattern to ReseNet50, 

DenseNet169, and EfficientNetB0. The model achieved an accuracy of 60.85% for 

deep learning and 73.5% for transfer learning in the first epoch. In the first 15 epochs 

deep learning managed to achieve an accuracy of 66.5% while transfer learning 

achieved an accuracy of 83.15%. 

Figure 4.4 shows Deep learning and Transfer Learning accuracy curves  
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Figure 4.4: VGG16 Deep Learning and Transfer Learning Accuracy Curves 

The results also demonstrate that the Visual Geometry 16 network (VGG16) model 

achieved the highest accuracy of 84.12%.  This high performance of the VGG16 

model over the other models can be attributed to its simple yet powerful architecture 

which is able to properly leverage on the convolution block and the fully connected 

block. Therefore, if VGG16 is modified and optimized it can achieve great 

performance in classifying diabetic retinopathy into its 5 classes. This has been  

demonstrated by [23] who added a NiN layer to VGG16 and the model was able to 

achieve 87% accuracy, Quadratic weighted Kappa metric of 0.85,  F1-score of 0.84, 

precision of 0.85, and recall of 0.87.  This performance of VGG16 justified the 

researcher’s choice to use it.  

4.3 Modified Model Architecture  

This section presents the architecture of the modified model which is part of the 

contributions that this research made. The modifications made have been highlighted 

in Figure 4.5. The model architecture has an attention model as part of the image 
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sequential pipeline. It also has a rebuilt top layer which has eliminated the original two 

dense layers of the VGG16 and replaced the output layer with a custom output layer.  

 

Figure 4.5: Modified Model Architecture 

4.4 Modified Model Algorithm  

Algorithm 3 represents the overall model’s algorithm that was used in the model. This 

algorithm is also part of the researcher’s contribution. The algorithm depicts where 

two-level optimization is happening during model training as well as the attention 

layer/mechanism added to the model’s architecture   
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Algorithm  3: Algorithm for the Improved Model 

 

4.5 Summary of hyperparameters after Tuning  

Table 4.3 shows the results of the hyperparameters that were obtained after 

hyperparameter tuning was done using a combination of hand-crafted 

hyperparameters and Keras tuner. Keras tuner was used since it fastens the process of 

hyperparameter search in TensorFlow platform. Handcrafting was used for 

Input →Fundus Images belonging to 5 classes  

Output →A model that classifies fundus images into the five classes  

1) Load the EyePacs dataset  

2) Data Pre-processing  

➢ Reshape image to (512, 512, 3), Split 70% training, 10% validation, 20% testing 

➢ Argument Minority classes only (To address data Imbalance) 

❖ Random Flip  

❖ Random Rotation  

❖ Random Zoom (Height_factor(-0.2, 0.3), Width_factor(-0.2, -0.3)) 

❖ Random Contrast (factor 0.1) 

❖ Random Translation (height_factor(0.1), width_factor (0.1) 

3) Import pre-trained VGG16 architecture+ ImageNet weights  

4) Modify the Architecture (Add Attention layer, rebuild top-layer, Freeze the model) 

5) Set Initial model hyperparameters  

6) Do feature extraction  

While initial batchsize=8 & Model.Trainble=False (The model is frozen) 

 For epochs 1 to 40 do 

o Automatically choose optimal learning rate from the range 

(1e-2 to 1e-6) 

o Update model parameters (Xtrain, Yvalidation ),  

o Evaluate model performance  

End  End  

7) Model training after feature extraction  

While model.trainable=True (Unfreezing the model) 

       Set batch_size=16, 32, and 64 for sessions 1, 2, and 3 respectively  

 For session 1 to 3 & epoch 1-40 for session 1, and 1-20 sessions 2-3 do  

o Automatically choose optimal learning rate (α) from the range (1e-

2 to 1e-6) for each gradient step.  

While α= optimal  

o Update model parameters (Xtrain, Yvalidation ),  

o Evaluate model’s (Xtrain, Yvalidation ) performance (Acc, Auc, 

QWK, F1, Recall, Precision) 

o Choose best model performance  

If Model (Xtrain, Yvalidation ) performance = Best  

✓ Apply the model to the test dataset 

✓ Record Performance  

End  End       End       End   

Two-Level 

Optimization 
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hyperparameters that could not be tuned using Keras tuner such as the progressive 

batch size, and the learning rate range. 

Table 4.3: Final Hyperparameters Obtained After Tuning 

Hyperparameter  Value  

Drop out 0.2 

Input size  512*512 

Input channels  3 

Gradient Clipping  1.0 

Number of Dense layers 1 

Number of Neurons in the Dense layer  5 

Area Under the curve (AUC) Threshold  200 

Dataset set split random seed  23 

Steps per epoch  792 

Mini_delta  0.01 

Batch size 8, 16, 32, 64 

Learning rate  Range (1e-2 to 1e-6)  

 

During the hyperparameter optimization process, the researcher discovered that they 

is a direct relationship between hyperparameters chosen and the performance of the 

model. Therefore, the hyperparameters presented in table 4.3 are the ones that gave 

best performance of the model.  

4.6 Results of the improved model’s performance  

This section shows how the improved model performed on the Eyepacs dataset. The 

results have been divided into four main sections to show results for training top layer 

only, training session 1, training session 2, and training session 3.  
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4.6.1 Top layer Training  

Table 4.4 shows the results obtained after training the top layer only while the other 

parts of the model were frozen. These results form the foundational results which show 

the model’s capability to leverage on previous knowledge.  

Table 4.4: Results of Training the Top Layer Only 

Performance Evaluation Metric  Score Achieved  

Accuracy  74.32% 

Precision  74.92% 

Recall 73.95% 

F1-Score  26.93% 

Quadratic Weighted Kappa Metric  0.3 

 

Figure 4.6 shows the top layer training and validation curves for the 40 epochs. The 

curve depict that the model was able to extract relevant high-level features from the 

dataset using the top layer. The curve also depicts that the training almost achieved a 

flat curve with minimal changes and thus further training without unfreezing the 

convolutional block would not have improved performance. The aim of freezing the 

other parts of the model was to enable the model to extract high-level features from 

the EyePACS dataset.  
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Figure 4.6 Top Layer Training and Validation Curve  

4.6.2 Full Model Session one  

Table 4.5 shows the results obtained from the first cycle of full model training, the 

results have a very significant improvement compared to the results obtained by 

training the top-layer of the model only.  The F1-score registered that highest 

improvement from 26.93% to 41.30%, accuracy improved by 4.91%, precision 

improved by 5.24%, recall improved by 4.47%, and Quadratic weighted kappa metric 

improved by 0.23. 
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Table 4.5: Results of the First Session of Training the Full Model 

Performance Evaluation Metric  Score Achieved  

Accuracy  79.23% 

Precision  80.16% 

Recall 78.42% 

F1-Score  41.30% 

Quadratic Weighted Kappa Metric  0.53 

Area Under the ROC Curve (AUC) 84.26% 

 

Figure 4.7 shows the training and validation curves obtained after training the full 

model for the first session. The curve demonstrate that unfreezing of the convolutional 

block helped in transferring convolutional weights gained from ImageNet into DR 

detection task. The curves also show that the by training the entire architecture the 

model is able to achieve higher performance than when training the top layer only.  
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Figure 4.7: Full Model Session 1 Training and Validation Curves 

4.6.3 Full model Second Session  

Table 4.6 shows the results that the model achieved from the second training cycle. 

The results though not yet optimal, demonstrate that the model is able to improve on 

its performance. Accuracy improved by 6.11%, precision improved by 4.3%, recall 

improved by 7.96%, F1-Score improved by 24.58%, Quadratic weighted Kappa 

metric improved by 0.26, Area Under the Curve (AUC) improved by 8.24%. 

 

 

 

 



98 
 

Table 4.6: Results of Training the Full Model for the Second Session 

Performance Evaluation Metric  Score Achieved  

Accuracy  85.34% 

Precision  84.46% 

Recall 86.38% 

F1-Score  65.88% 

Quadratic Weighted Kappa Metric  0.79 

Area Under the ROC Curve (AUC) 92.5% 

Figure 4.8 shows the training and validation curves obtained after training the full 

model for the second session. The curve demonstrates considerable improvement from 

the previous training sessions.  

 

Figure 4.8: Full Model Session Two training and validation curves 
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4.6.4 Full model Third Session  

Table 4.7 shows the performance results that the model achieved during the third 

training session. The results show evidence of improvement from the previous 

training cycle. Accuracy improved by 2.89%, precision improved by 3.64%, 2.22%, 

F1-Score improved by 7.58%, Quadratic weighted kappa metric improved by 0.05, 

and AUC improved by 0.8%.  

 

Table 4.7: Results of Training the Full Model for the Third Session 

Performance Evaluation Metric  Score Achieved  

Accuracy  89.06% 

Precision  88.9% 

Recall 89.2% 

F1-Score  75% 

Quadratic Weighted Kappa Metric  0.84 

Area Under the ROC Curve (AUC) 93.3% 

 

Figure 4.9 shows the training curve obtained after training the full model for the third 

session. The third curves show considerable improvement in performance from the 

previous training sessions. The curve also shows that the model has achieved optimal 

performance since the validation curve has stopped improving and the highest points 

almost flattened. 
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Figure 4.9: Full Model Session Three training and validation curves 

4.7 Comparison of the Results with the existing models  

Table 4.8 shows a comparison of the results obtained by the Improved model against 

the other existing models in literature. In this comparison we only considered models 

that classified diabetic retinopathy into five classes. Therefore, models such as the 

ones developed by Charu, Jain, and Sood [23], Shenavarmasouleh et al., [32],  Hagos 

and Kant [19], were ommitted since they classify diabetic retinopathy into four, three, 

and two classes respectively. From the table it is evident that the new model has higher 

performance compared to the existing models.  The blank cells in the table means that 

the researcher did not use the evaluation metric in that column as part of their 

evaluation metrics. For instance, Kahn et al [23]did not use QWK while Jinfeg et al 

[36] did not use precision.  
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Table 4.8: Comparison of Existing Models to the Improved Model 

Model  

Evaluation Metrics  

Accuracy 

(%)  QWK  

F1 

Score 

(%) 

Precision 

(%) 

Recall 

(%) 

AUC 

(%) 

Qummar et al [17] 80.8  53.74 63.85 51.5 91.0 

Pratt et al [35] 75  41.6  30  

Jinfeng et al [36] 80.36    47.70 89.5 

Khan et al [23] 85  59.6 67 55.6 89.5 

Chilukoti et al 

[18] 87 0.85 84 85 87 

 

Bodapti et al. 

[114] 81.7 0.70 80 80 81 

 

Kassani et al [115] 83.09    88.24 91.8 

Dondeti et al 

[116] 77.90  75 76 77 

 

Bodapti et al.[117] 82.54  82 82 83 79 

Proposed Model  89.06 0.84 75 88.9 89.2 

 

93.3 

  

4.8 Discussion  

The main objective of this study was to develop an improved model for diabetic 

retinopathy classification using transfer learning approach and two-level optimization 

of hyperparameters. The findings of the study demonstrate that transfer learning which 

is one of the meta-learning techniques is a powerful approach that enables models to 

leverage on the previously acquired knowledge in solving a new task. This powerful 

capability of transfer learning has been demonstrated not only in this study but also in 

the related works. Table 4.8 shows that Pratt et al [35] who trained a CNN model has 

achieved the lowest performance compared to all the others who have used transfer 

learning.  

4.8.1 Identification of Best Architecture for Transfer learning Model 

Based on the results, transfer learning has demonstrated capability to deliver models 

that are scalable, robust, less costly in terms of training time, and able to learn from 

limited dataset and achieve high performance[118][69]. These capabilities directly 
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relate to the fact that in transfer learning a model learns general knowledge then 

optimizes to adopt the knowledge acquired to a specific task [13][119].  For instance, 

in Image classification, a meta-learning model learns key aspects of image 

classification such as feature extraction and weighting then transfers this knowledge 

and applies it to a specific task like Diabetic retinopathy classification.  

The findings also show that the various existing neural network architectures that can 

be used for transfer learning have different capabilities. This difference in capabilities 

is influenced by the internal structures of different architectures, for instance 

DenseNets use densely connected networks, EfficientNets use balancing of weight, 

height, and contrast, while VGG Nets use propagation through a combination of 

convolutional blocks and fully connected block. VGG16 proofed to be more superior 

than the others in diabetic retinopathy classification. This superiority was as a result 

of the powerful sequence of convolutional blocks coupled by the fully connected block 

that has capabilities to map the output of convolutional block and prepare them for 

final classification.  

The findings further demonstrate that the default architecture of VGG16 may not give 

optimal performance in some task due to dataset differences. Therefore, there is need 

to modify the architecture in order to achieve high performance. This fact has been 

substantiated by other researchers such as [23] who added a spatial pooling layer to 

VGG16 to boost its performance. In this study, modifying the architecture by adding 

an attention layer and rebuilding the top layer played a critical role in attaining the 

superior performance[57].  

The findings also depict that model optimization plays a very critical role in 

determining model performance. A good optimization approach in Meta-learning 
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should be one in which a model has some aspect of self-optimization influenced by 

the dataset used [118][69]. Two-level optimization used in this study gave the model 

capabilities to have learning and data-driven optimization through automatically 

selecting a suitable learning rate. This made it possible for the model to achieve high 

performance and continuously improve its performance from one session to another.  

The batch size used has significant influence on the performance of a model. Kandel 

and Castelli [112]  argue that it is ideal to start with a small batch size during initial 

stages of the model training so that the model can extract important features from the 

data. However, this batch size must be mapped with a suitable learning rate for good 

performance to be achieved. Large batch sizes affect generalizability while small batch 

size take longer to train[113]. Therefore, there is need to balance between batch size 

and learning rate to achieve optimal performance. This study used a progressive batch 

size and autotuning of the learning rate under the two-level optimization approach, 

thus, for each batch size the model was able to choose its optimal learning rate, 

therefore, resulting to the high performance recorded by the model.  

The findings also depict that training data distribution affects performance of the 

model. Imbalanced data does not give reliable accuracy while balanced dataset can 

provide more reliable accuracy[36]. This research did some data balancing by 

augmenting the minority classes. The impact of this balancing has been depicted in 

the performance since the model achieved a higher accuracy, precision, recall and 

AUC as compared with existing works such as [36].  

4.8.2 Top layer only  

The results of training the top layer demonstrate that in transfer learning, models are 

able to extract critical features from the dataset through the top layer. The results also 
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show that network architecture is powerful since the model was able to achieve a good 

performance in this training session. Also, by training the rebuilt top-layer only while 

the other parts were frozen, the model was able to prepare the top-layer to now utilize 

weights obtained from ImageNet in the subsequent training sessions. The flat training 

and validation curves depict that the model managed to achieve the climax of top-layer 

training and thus there was need to engage the other layers in the model.  

4.8.3 Full model Session one  

The results obtained after training the full model for the first session depict that; by 

using a small batch size of 8 the model was able to leverage on knowledge acquired 

from ImageNet and utilized it in solving diabetic retinopathy detection task. Also, the 

training ad validation curves depict that by unfreezing the convolutional block the 

model was able to overcome the flat curve in Top-layer training only. Further, the 

results show the power of transfer learning since in this first session of transfer 

learning, the model has already surpassed models such as Pratt et al [35]. 

4.8.4 Full Model Session Two 

The results of training the full model for the second session demonstrate a considerable 

improvement from the previous training session. This can be attributed to the concepts 

progressive batch size and Two-level optimization that the researcher employed in this 

researcher. Two-level optimization has enabled the model to choose the best learning 

rate for batch size 32. The training and validation curves have some rigorous ups and 

downs. This depicts that the model was adjusting the learning rate to fit the batch size 

almost after every 1.5 epochs. This also shows that at batch size 32 the model had 

obtained sufficient features from the dataset and now the model was now seeking for 

convergence. According to  Kandel and Castelli’s [112] at this point the model desires 

a larger batch size so that it converge. 
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4.8.5 Full Model Session Three  

The findings show that in this final session optimal performance was achieved. This 

is depicted by the training and validation curves which show that the validation curve 

stopped improving.  The increased gap between the training and validation curves 

show that further training was not necessary since it would not improve the model. 

The findings also show that the new improved model is more superior than the existing 

model. 

 This is so since the model has been able to achieve domain-shift generalizability by 

optimizing the weights obtained from ImageNet to fit the diabetic retinopathy 

classification task. This was affirmed by validating the model using the validation data 

set and finally testing the model using the testing dataset. The model demonstrated 

capability to differentiate between the five classes of diabetic retinopathy as shown by 

the high AUC achieved. The model also achieved a good quadratic weighted Kappa 

metric of 0.84 which shows that there is almost perfect agreement between the 

classified labels and ground truth.  

Although Chilukoti et al [18] achieved a higher QWK of 0.85 which is 0.01 higher 

compared to the proposed model, the difference is insignificant since in both cases the 

QWK’s are above the 0.81 threshold of almost perfect agreement. Chilukoti et al [18] 

has also achieved a higher F1-score compared to the proposed model. However, the 

proposed model has surpassed Chilukoti et al [18] in model’s accuracy by 2.06%, 

model’s precision by 3.9%  and model’s recall by 2.2%. Therefore, the overall 

performance of the proposed model is better than Chilukoti et al [18]. Also, Chilukoti 

et al [18] has not considered the degree of separability between classes. 
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The high recall of 89.2% (True Positive rate) achieved by the model shows that the 

model has very low chances of failing to detect a patient with diabetic retinopathy. In 

terms of recall the model has surpassed the second best which is Kassani et al [115] 

by 0.96% which is significant difference. The model has also achieved a high Area 

Under the Curve (AUC) of 93.3%. This high AUC shows that the model is able to 

clearly separate between the five classes of diabetic retinopathy. The model has 

defeated other models in literature in terms of AUC. The difference between the 

proposed model’s AUC and the second-best AUC in literature is 1.5%.  

The model achieved an accuracy of 89.06% which is 2.06% higher than the first 

runners up in literature. The high accuracy achieved by the model shows that the 

model is better in classifying unseen data into the five classes of DR compared to other 

existing models in literature. The model also achieved a high precision of 88.9% which 

is 2.9% higher than the second-best model. The high precision depicts that the model 

was able to achieve a good ratio of truly classified samples against the true positives 

and false positives.  

The combination of high AUC, high recall, high QWK, high accuracy, and high 

precision shows that the model can correctly classify a patient’s fundus image into the 

rightful class of diabetic retinopathy. This surpasses models such as the ones 

developed by [28] and [19] which can only classify a patient’s fundus image as either 

healthy or unhealthy, thus they can only be used for detection of diabetic retinopathy 

and cannot be used for categorization of  diabetic retinopathy. It also surpasses other 

models that can do both tasks in terms of how perfectly they do the task as shown in 

Table 4.8.   
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4.9 Summary  

This chapter presents the results of the research conducted. The chapter starts by 

identifying the best architecture for transfer learning through a comparative analysis. 

VGG16 emerged as the best architecture for transfer learning and thus it was modified 

to suit the DR detection task. The results of the modified VGG16 which depicts the 

new architecture after modification as well as the modified model algorithm have also 

been presented. The chapter has provided a summary of hyperparameters that were 

obtained during hyperparameter tuning.  

The model was trained for four sessions and the results for each training session have 

been provided in this chapter. This is followed by a comparison of the proposed model 

with existing models. The results depict that the proposed model has achieved superior 

performance compared to existing models in literature. The chapter ends with a 

discussion section. This section discusses the results obtained in this research and how 

they compare to what is already existing.  
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5. CHAPTER FIVE  

CONCLUSION, RECOMMENDATIONS AND FUTURE WORK 

5.1 Conclusion  

This study aimed at developing a Transfer learning and two-level hyperparameter 

optimization-based model for improved detection of diabetic retinopathy. To achieve 

this the researcher formulated three specific objectives and three research questions.  

The first objective was to analyze existing deep learning and transfer learning models 

for classification of diabetic retinopathy. To achieve this, the researcher conducted a 

literature review of existing studies that have used transfer learning approaches or deep 

learning to classify diabetic retinopathy. The obtained research works were further 

grouped into two, group A consisted of those that classified diabetic retinopathy into 

its five distinct classes namely No. DR, Mild DR, Moderate DR, Severe DR, and 

Proliferative DR. Group B on the other hand consisted of the works that did not 

classify DR into the five classes. The researcher focused on group A of the related 

works. EfficientNet, VGGNets, DenseNets, ResNets were identified as the most used 

network architectures for transfer learning.  

The researcher further did a comparative analysis of these architectures. The analysis 

involved training the architectures using the same dataset, same hyperparameters, and 

same environment setup. The aim was to determine which architecture is superior than 

the rest. VGG16 emerged as the best performer and thus it was selected as the 

architecture of choice in this study.  

The second objective involved redesigning the transfer learning model identified in 

objective one and tuning its training hyperparameters using two-level optimization. 

Here the VGG16 architecture was modified to include an attention module, Batch 

normalization layer, Global average pooling layer, and dropout layer. The 
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classification layer was also modified to classify DR into five classes. The model was 

then trained using the EyePACS dataset and applying two-level optimization.   

The third objective was to validate and test the model. Model validation was done 

using the validation dataset while model testing was done using the testing dataset. 

The testing dataset was unseen by the model since when the dataset was split to 70% 

training, 10% validation and 20% testing, the model was only subjected to the training 

and validation splits. Then the best performing model scenario based on model 

checkpoints was subjected to the unseen testing data. Therefore, the final test results 

obtained by this model are results of unseen testing data. This is the industry standard 

and has been practiced by other researchers such as [17][23][18][116][114] 

The final results obtained show that the improved model is superior than the existing 

ones. The model managed to achieve the following in accuracy, quadratic weighted 

kappa metric, F1 score precision, recall, and area under the curve respectively; 

89.06%, 0.84, 75%, 88.9%, 89.2%, 93.3%. The high performance of the model is 

attributed to the modified structure of the neural network, data pre-processing, and 

two-level optimization.  

This study has also demonstrated that meta-learning techniques which include transfer 

learning are powerful compared to other approaches since they are able to deliver a 

model that is robust. This has been demonstrated by the ability of the improved model 

to achieve domain shift generalizability. i.e the model was pretrained using ImageNet 

dataset and the knowledge in form of weights was transferred to solving the diabetic 

retinopathy classification task and achieved superior performance.  
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5.2 Recommendations  

The scope of this research is in machine learning, more specifically neural networks. 

Achieving the results obtained in this research requires high performance computers 

with powerful GPUs that can-do parallel processing. Such resources were not 

available and thus the researcher turned to using cloud-based resources in Google 

Collaboratory. The challenges encountered in this research influenced the researcher 

to make the following recommendations.  

5.2.1 The Ministry of health to collect and maintain a database of medical 

datasets  

The ministry of health should collect medical data from various hospitals in Kenya, 

store the data, and maintain it for purposes of usage in machine learning. This will 

help researchers in machine learning to apply machine learning methods in addressing 

major medical conditions affecting Kenyans. This will result to solution that are 

custom-made to address health challenges in Kenya and also suitable for adoption in 

Kenyan hospitals. The homegrown dataset will also reduce reliance on secondary 

datasets obtained from other countries. This research used the EyePacs dataset which 

is collected by EyePacs organization based in USA. Therefore, having local publicly 

available dataset will be a good path towards localizing solutions.  

5.2.2 Adoption of developed models  

There is a lot of research in machine learning that has been done across the learning 

institutions in the country. However, the findings of these research remain unused 

despite the value they would deliver. The government as well as the private sector 

should consider adopting machine learning models that deliver desirable solutions in 

their domain. This will help the country in leveraging on the power of machine 
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learning to address some of the issues it faces not only in healthcare but also in other 

fields such as agriculture.  

5.2.3 Facilitation of postgraduate students  

Publishing open access in high impact factor journals requires a lot of money. 

Postgraduate researchers should be facilitated to publish in high impact factor journals 

so that their research work can reach out to the global research community. Also, the 

government in partnership with the institution should provide postgraduate researchers 

with stipends to cater for other research costs such as printing, software subscription, 

conference fees, among others.  

5.3 Future work  

This research focused on what was specified in the study objectives and the scope of 

the study. Also, other factors such as time and resource constraints inhibited further 

extension of this model. Therefore, there are some issues that are still open for further 

research as a way of improving this study. Some of the future works that the researcher 

identified include the following.  

5.3.1 Use of another type of machine learning  

This study used supervised learning which uses labeled data. Supervised learning is 

the most used type of machine learning and has been used by other researchers in 

literature such as [115][17]. Therefore, it has been considered to be the best compared 

to others in terms of ease of training. The literature also documents that there are other 

types of machine learning such as semi-supervised learning which uses partly labeled 

data, unsupervised learning which uses unlabeled data, and reinforcement learning 

which uses a reward system. The researcher proposes that in future other researchers 

can use other types of machine learning in classifying diabetic retinopathy.  
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5.3.2 Increase Multi-task capabilities of the model  

This model focused on classification of diabetic retinopathy. The researcher proposes 

that in future researchers can use multi-task learning to extend the model to detect 

other eye diseases. This will increase the robustness of the model since a single model 

will be useful in detecting and classifying multiple eye disorders. This will also be a 

path towards Artificial General Intelligence (AGI).  

5.3.2 Creating a G.U.I to facilitate deployment of this model  

The researcher proposes that in future other researchers can use deployment 

frameworks to create a suitable graphical user interface and deploy the model for 

usage. This would make the model to be patentable and ready for use in the hospitals. 

It would as well enhance the portability of the model and compatibility of the model 

across different platforms.  
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