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A B S T R A C T

Worldwide, utilities are aiming to increase the stability of modern power systems during system disturbances.
Optimizing generation scheduling can improve system security in contingency and stressed conditions while
lowering losses and generation costs. An efficient operating strategy for maintaining power system stability is
proposed in this work. The paper focuses on incorporating a Voltage Collapse Proximity Index (VCPI) in the
traditional optimal power flow problem for multiobjective optimization (MO). Different case studies are assessed
to evaluate the impact on the control variables. A Preference Selection index (PSI) is utilized to determine the
best-case study for optimal system operation. The effectiveness of the proposed approach is tested on standard
IEEE 30-bus and IEEE 57-bus during normal, contingency, and stressed conditions using MATPOWER. During
normal conditions, the MO voltage stability constrained optimal power flow (VSC-OPF) increases the system
stability by 28.13 % higher than the single objective (SO) case. Furthermore, the transmission losses are lowered
by 14.69% with the proposed MO approach. During line outage contingency conditions, the voltage stability
enhancement and loss reduction are higher in the MO than in the SO case by 13.60% and 23.19%. However, the
loss minimization and stability improvement during normal and contingency conditions come at a slightly higher
generation cost of 5.05% in both systems. On the other hand, during stressed conditions, the SO performs better in
voltage stability improvement (by 8.77%) and loss reduction (by 6.97%) than in the MO voltage stability con-
strained OPF. Additionally, PV Curve analysis for the two systems indicates that voltage stability in MO OPF
problems provides a more significant margin enhancement of 9.00%, 118.95% in normal and contingency,
respectively, higher than the SO case. However, the SO case increases the load margin by 12.36% more than the
MO case in stressed conditions. Consequently, the PSI ranks the multiobjective optimization of the three objec-
tives as the most optimal way for operating the systems in normal and line outage contingency conditions.
However, during increased load conditions, the system performance is better if a singular objective function is
considered. This is due to the lack of adequate reactive power generation during stressed conditions, and hence a
singular objective focus is sufficient to assure system stability. Therefore, the proposed approach is an effective
preventive control measure for possible voltage collapse in typical power systems. The resulting improvement also
brings about a sufficient system stability margin, causing the system to become more secure.
1. Introduction

The voltage instability problem is becoming a severe issue in modern
power systems because the generation and transmission capacity is un-
able to meet the increasing load demand. At the same time, the lack of
adequate reactive power sources in the system leads to bulk power losses
in transmission lines [1]. The conditions worsen during system distur-
bances. Therefore, it is essential to consider voltage stability
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improvement among the objectives of the optimal power flow (OPF)
problem. OPF is one of the significant tools used over decades in energy
management systems for reliable operation and proper planning of
modern power systems. The OPF problem is a non-linear, non-convex,
and multi-dimensional optimization problem with control variables such
as voltage magnitude, active and reactive power generation as contin-
uous variables, and transformer tap ratios and shunt capacitor as discrete
variables [2]. In high-risk voltage instability situations such as heavily
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loaded and line outage contingency conditions, the voltage limit
constraint might be insufficient to assure the acceptable voltage stability
level. Instead, the objective function should incorporate or focus on the
voltage stability enhancement to guarantee system security [3]. Hence,
the renewed interest in voltage stability constrained optimal power flow
problems [1, 3, 4, 5, 6, 7, 8, 9].

In the recent literature, three main approaches have been used to eval-
uate the voltage stability constrained OPF (VSC-OPF) problems. Firstly, in
[1, 3, 10, 11, 12, 13, 14], the voltage stability indices (VSI) are formulated as
singular objective functions.VSIs describe the systemstabilitybymeasuring
the distance of the actual state of the system to the stability limit. In [1], the
proposed approach enhanced the voltage stability margin by 19.96%,
7.55%, and 0.18% for IEEE 30-, IEEE 57-, and IEEE 118-bus systems,
respectively. Moreover, during line outage conditions, the system load-
ability was also enhanced by an average of 3.75% across the three test
systems. [3] also used this approach toevaluate the effectiveness of different
stability indices for generation cost, emission, transmission loss reduction,
and maximum loadability enhancement. The results indicated that VCPI
reduced the transmission system losses by 58.11%, 49.64%, 35.59% and,
62.00% for IEEE 14-, IEEE 30-, IEEE 57- and IEEE 118-buses, respectively,
compared to the L-index. On the other hand, L-index gave the maximum
loadability on the test systems. Authors in [5, 15] also incorporated the
L-index summation as one of the objective functions for validating the
proposed algorithms. In [16], the summation of L-index as the objective
function under a single line outage contingencywas also evaluated. Despite
the simplicity and less computational requirements in this approach [1],
there is still a lack of operational practicality. Power systems have con-
flicting objectives such as generation cost and loss minimization, which
must be addressed simultaneously. The generation costs also in this
approach are lower since only one objective is minimized. However, the
system is more prone to higher transmission losses.

The voltage stability indices are formulated in a multiobjective (MO)
optimization problem in the second approach. The MO is treated as a
single-objective optimization by assigning suitable weights to each
objective function, and then only a single solution is obtained [17, 18].
The merging of voltage stability and generation cost objective functions
using the weighted sum approach in [19] provided a higher reduction in
generation cost and loss of 0.15% and 7.42%, respectively, compared to
the singular objective function approach. Additionally, the voltage sta-
bility improvement was 4.03% more than the single-objective approach.
However, the problem with this technique is that it requires weights for
each objective resulting in the limitation of the available choices and the
need for multiple runs [20]. In engineering problems, subjective and
unpredictable weightings used in objective functions are the primary
cause of a misleading solution because different sensitivities and un-
predictable noise of different data sets lead to uncertainty in weighting.
Thus, the Pareto optimality approach is an excellent way to obtain a set of
possible solutions, including an optimum solution in objective function
space, overcoming weighting, and combining [21].

The last approach, the multiobjective optimization method, finds a
compromise solution by satisfying two or more objective functions
simultaneously. This technique minimizes the voltage stability improve-
ment alongside other competing objectives such as cost and loss minimi-
zation. An external repository is utilized to save all non-dominated
optimal solutions during the process. Upon having the Pareto-optimal set
of non-dominated solutions, a fuzzy decision-making technique is applied
to sort out the best compromise solution to the decision-maker. In [4], a
multiobjective optimization considering two indices, novel line stability
index (NLSI) and critical boundary index (CBI),wasperformed for stressed
system conditions. The analysis revealed that multiobjective VSC-OPF
incorporating VSIs enhanced the stability by about 64.558% higher than
the single-objective approach [22]. Furthermore, the cost and loss
reduction in the VSC-OPF approach [4]was higher by 0.19%and 9.837%,
respectively. Authors in [23] also solved a multiobjective OPF of a
wind-thermal power system while incorporating the Voltage Stability
Enhancement Index (VSEI). The addition of a stability index in
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multiobjectiveOPF improved the system stability by 20.477%higher than
the single objective function problem of VSEI. There is also a cost and loss
reduction of 0.32% and 2.59%, respectively, benefited from using the
multiobjective OPF involving the addition of the VSEI. [24, 25] also
implemented a multiobjective optimization using the L-index on the IEEE
30- and IEEE 57-bus systems. However, the analyses do not consider any
change in the system operating conditions. The studies in this approach
demonstrate a significant improvement in the stability and security of the
system when VSIs are incorporated in the MO OPF problems. Additional
benefits of loss and cost reduction are also achieved with this approach.
However, the literature highlighted lacked a holistic justification for using
line VSIs in the system. Additionally, no selection mechanism was pro-
vided for the different results from the several case studies, leaving the
decision prone to human error as operators have to decide the best option
for operating the system. This can lead to a compromise of the system's
security and stability and eventual system collapse. More so, voltage sta-
bility is critical during system disturbances, yet the literature doesn't
prioritize system stability improvement during such conditions. As a
result, a more detailed analysis is still required to advise utilities on the
ideal operating plan.

Therefore, this research proposes an efficient operational strategy for
improving static voltage stability during different system conditions. The aim
is to justify the significance of multiobjective voltage stability constrained
optimization inmaintaining system stability during system disturbances. The
Multiobjective Particle SwarmOptimisation (MOPSO) algorithm is employed
to minimize three objectives of generation cost, transmission loss, and the
maximum voltage collapse proximity index (VCPI). To verify the proposed
approach, theVSC-OPF is tested on two systems: IEEE30-bus and IEEE57-bus
systems, under normal, contingency, and stressed operating scenarios. The
results from single objective and multiobjective case studies are compared to
justify the importance of the approach.

The key contributions of this work are as follows:

(i) Analysis of multiobjective function incorporating the Voltage
Collapse Proximity Index for different system operating conditions

(ii) An evaluation of the impact of the system conditions on the static
voltage stability performance considering generation cost and
power loss

(iii) A ranking of results from the different case studies based on the
Preference Selection Index

The advantages of this approach include a fast approximation of
distance to collapse due to the use of the superior VCPI index [1, 3, 4]
and, it is a time-saving technique for decision-makers as the Preference
Selection Index provides a quick output of the best operating case study.
However, the challenge remains on the limitation of the generator power
outputs that would curtail the level of improvement achieved during
system disturbances. Moreover, evaluating two or more objective func-
tions is more complex than one. The proposed approach presented in
Figure 1 is applicable in the Energy Control Center as a preventive control
measure for possible voltage collapse [1].

The rest of the article is classified into five sections: Section 2 in-
troduces the problem formulation and constraints of the multiobjective
optimization problem. Section 3 highlights the basic concepts of multi-
objective optimization using the Multiobjective Particle Swarm Optimi-
zation Algorithm. Section 4 discusses the optimization results obtained
and the system's performance in different operating conditions. Results
from five case studies are analyzed here for both IEEE 30- and IEEE 57-
bus systems. Finally, in Section 5, the deductions and implications
from the simulation findings are presented.

2. Problem formulation

Multiobjective Optimal power flow (MO-OPF) problem is formulated
using more than one objective function to find optimal control variables
while simultaneously satisfying constraints. This study considers the



Figure 1. Block schematic of the proposed approach in a typical energy control center (ECC).

Figure 2. Non-dominated sorting of a population-based on Pareto Front.
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minimization of three objective functions; fuel cost, voltage stability, and
transmission loss [4]. The general multiobjective approach is formulated
with the following primary objective function [26];

minimize f ðxÞ ¼
n
f1ðx; uÞ; f2ðx; uÞ; f3ðxÞ;…; fNobjðx; uÞ

o
(1)

subject to

gðx; uÞ¼0 (2)

hðx; uÞ � 0 (3)

where f, g, and h represent the objective function, equality and inequality
constraints, respectively. The x vector represents state variables i.e.,
active power of the slack bus, load bus voltage magnitudes, reactive
generator powers, and apparent power flows. x is expressed as in Eq. (4):

x¼ �Pgslack; Vd1;…:; VdNd ;Qg1; …:;QgNs ; Sl1; …:; S1N1

�
; (4)

where Pgslack represents the slack bus generator active power at the slack
bus, Vd1 is the load bus voltage magnitude at bus i, Ng is the total number
of generators, Sli is the branch i apparent power flow, and Nl is the total
number of transmission lines/branches.

u is a vector of control variables consisting of active power generation
(except on the slack bus), generator bus voltages, transformer tap ratios, and
the reactive powers of shunt compensation capacitors, and is expressed as:

u¼
h
Pgi; …:; PgNd ;Vg1; …:;VgNs ; T1; …:; TNtran ; Qc1; …:; QcNcap

i
; (5)

Where Pgi is the bus i active power generation, Vgi is the bus i generator
bus voltagemagnitude,Ntran is the total number of transformer taps,Qci is
the bus i shunt compensation capacitor at i, and Ncap is the total number
of compensation capacitors.

Multiobjective optimization is a technique built on the principle of Pareto
dominance. Details of the Pareto dominance algorithm for optimal solution
point sortingcanbe found in [27].Figure2 shows theParetooptimal solutions
basedon theconceptofnondominated sorting.TheParetoFront (or curve) is a
set of nondominated solutions, being chosen as optimal if no objective can be
improved without sacrificing at least one other objective.

2.1. Objective functions

In this study, three objective functions of the OPF, consisting of fuel
cost, transmission line losses, and maximum value of the line VCPI are
considered as detailed below.
3

2.1.1. Minimization of total fuel cost of generation
The objective here is to minimize the total fuel generation cost. The

function is formulated as follows;

f1ðx; uÞ¼
Xng
i¼1

�
ai þ biPgi þ biP2

gi

�
(6)

where fc(x) is the total fuel cost, ng is the number of generator buses; ai, bi
and ci are the ith generator cost coefficients; and Pgi is the active power
injection of the ith generator.

2.1.2. Minimization of loss
The objective of this function is to minimize transmission loss in MW.

It is given by;

f2ðx; uÞ ¼
XNline

k¼1

Gk

�
V2
i þV2

j � 2ViVjcos
�
θi � θj

��
(7)

where Gk is the conductance of the kth line. Vi and Vj are the voltage
magnitude at the two ends of line k. θi and θj are the bus voltage angles at
the two ends of line k.
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2.1.3. Minimization of the maximum line VCPI
The Voltage Collapse Proximity Index (VCPI) is incorporated into the

traditional OPF problem highlighted in Eq. (8). The static voltage sta-
bility margin improvement is based on VCPI is proposed as follows;

f3ðx; uÞ¼maxðVCPIiÞ (8)

where VCPI is given by [3]:

VCPIðpowerÞ¼ Pr

PrðmaxÞ (9)

PrðmaxÞ¼V2
s

Z
cos∅

4cos2ððθ �∅Þ=2Þ (10)

where ∅ ¼ tan�1ðQr =PrÞ
The value of VCPI increases gradually with increasing power flow

through a transmission line. When VCPI reaches the value 1, then voltage
collapse occurs. The value of VCPI varies from 0 (no-load condition) to 1
(voltage collapse).
2.2. System constraints

In the OPF problem, there are two types of constraints to consider.
Eqs. (11), (12), (13), (14), (15), (16), and (17) describe the system
constraints to be handled.

2.2.1. Equality constraints
These include the power balance equations in the network;

Pgi � Pdi ¼ Vi

XN
j¼1

Vj
�
Gijcosθij þ Bijsinθij

�
i ¼ 1;…;N (11)

Qgi � Qdi ¼ Vi

XN
j¼1

Vj
�
Gijsinθij þ Bijcosθij

�
i ¼ 1; :::;N (12)

where Pgi and Qgi are the generated active and reactive powers at the i th
generator. Pdi andQgi are the real and reactive power loads at bus i. Vi and
Vj are the voltage magnitude at buses i and j. Gij and Bij denotes line
conductance and susceptance between buses i and j, respectively. θij is the
phase angle difference between buses i and j. N represents the total
system buses.

2.2.2. Inequality constraints
The inequality constraints to be considered are as follows:
Generator limits:

Pmin
gi � Pgi � Pmax

gi ; i ¼ 1; :::; Ng (13)

Qmin
gi � Qgi � Qmax

gi ; i ¼ 1; :::; Ng (14)

Vmin
gi � Vgi � Vmax

gi ; i ¼ 1; :::; Ng (15)

Transmission line limits:

��SLi �� � Smax
Li ; (16)

Load bus voltage magnitude limits:

Vmin
di � Vdi � Vmax

di ; i ¼ 1;…;Nd (17)

where Pmin
gi is the minimum active power generation, Pmax

gi the maximum

active power generations at bus. Qmin
gi and Qmax

gi are the minimal and

maximum reactive powers generations at bus i. Vmin
gi and Vmax

gi are the
lower and upper limit of generator voltage magnitudes at bus i. SLi and
4

Smax
Li denote the apparent power flow and its maximum value at branch i.

Vmin
di and Vmax

di are the lower and upper limit load voltages at bus i.
2.3. Constraint handling

Satisfying the equality constraints is guaranteed by running Newton
Raphson power flow equations. The inequality constraints are guaran-
teed through self-restriction of the control variables within predefined
boundaries. An extra term called the penalty function that combines all
the inequality constraints is added to the primary cost function. In this
study, quadratic constraints handling will be used to generate an
augmented fitness function of the form [1];

Jðx; uÞ ¼ f ðx; uÞ þ KP

�
Pgslack � Plim

gslack

�
2 þ KV

XNload

i¼1

�
Vdi � Vlim

di

�2

þ KQ

XNline

i¼1

 
Qgi � Qlim

gi

!
2þ KS

XNline

i¼1

�
SLi � SlimLi

�2
(18)

where J (x,u) is the penalized objective function; Kp, KQ, KV, and Ks are
the penalty factors. The original objective function f (x,u) is altered if the
solution x is infeasible. Plimgslack, Q

lim
gi , V

lim
di and SlimLi are the limit values

associated with generator active power, reactive power, load bus voltage,
and apparent power. The constraint violations of the state variables are
shown in Eqs. (19), (20), (21), and (22).

Plim
gslack ¼

8>>><
>>>:

Pmax
gslack; if Pgslack > Pmax

gslack

Pgslack; if Vmin
di < Pgslack < Pmax

gslack

Pmin
gslack; if Pgslack < Pmin

gslack

(19)

Qlim
gi ¼

8>>><
>>>:

Qmax
gi ; if Qgi > Qmax

gi

Qgi; if Qmin
gi < Qgi < Qmax

gi

Qmin
gi ; if Qgi < Qmin

gi

(20)

Vlim
di ¼

8>><
>>:

Vmax
di ; if Vdi > Vmax

di

Vdi; if Vmin
di < Vdi < Vmax

di

Vmin
di ; if Vdi < Vmin

di

(21)

SlimLi ¼ Smax
Li if SLi > Smax

Li (22)

The penalty function outputs very high values when the real or active
power is outside the allowable range; hence the algorithm moves the
active and reactive powers in the permissible limits to avoid a high
penalty value.

3. Computational algorithm and procedure

3.1. Multiobjective particle swarm optimization (MOPSO) algorithm

This study's optimization algorithm used to solve the Voltage Stability
Constrained OPF is the MOPSO algorithm. It is used to solve the weighting
factors problem encountered in PSO by uniting "Pareto-dominance prin-
ciples" with PSO. TheMOPSO approach employed in this work is described
in [27, 28]. All of the non-dominated particles in the swarm are gathered
into a sub-swarm called Repository, and every particle chooses its global
best target among members of this Repository, as highlighted in Figure 3.
Like PSO, particles in MOPSO share information and move towards global
best particles and their own personal (local) best memory. Using the local
best X*

j ðtÞ and the global best X**
j ðtÞ of each particle, Þ; j ¼ 1; :::;n, the jth

particle velocity in the kth dimension is updated according to Eq. (23). The
position is updated according to Eq. (24).



Figure 3. MOPSO algorithm procedure.
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vj;kðtÞ ¼ wðtÞvj;kðt � 1Þ þ c1r1 x*
j;kðt � 1Þ � xj;kðt � 1Þ þ c2r2 x**

j;kðt � 1Þ�

� � �

� xj;kðt � 1Þ
(23)

xj;kðtÞ¼ vj;kðtÞ þ xj;kðt�1Þ (24)

where vj;kðtÞ represents the velocity of particle j at iteration t. c1 and c1 are
positive constants and r1 and r1 are uniformly distributed random
numbers in [0,1]. xj;kðtÞ is the position of particle j at iteration t.
3.2. Best compromise solution (BCS)

Fuzzy set theory has been commonly used to efficiently choose a
candidate Pareto-optimal solution among the many possible solutions on
the Pareto front. Due to the nature of the decision maker's irrationality,
the i� th objective function of a solution in the Pareto-optimal set, Fi, is
represented by a membership function μi defined as [29]:

μi ¼

8>>>><
>>>>:

1; Fi � Fmin
i ;

Fmax
i � Fi

Fmax
i � Fmin

i

; Fmin
i � Fi � Fmax

i ;

0; Fi � Fmax
i

(25)

where Fmax
i and Fmin

i are maximum and minimum values of the i� th
objective function, respectively.

For each non-dominated solution k, the normalized membership
function μk is calculated as:

μk ¼
PNobj

i¼1 μ
k
iPM

j¼1

PNobj
i¼1 μ

j
i

(26)

The number of nondominated solutions is M. The best compromise
solution is the one having the highest value of μk. Arranging all solutions
in descending order according to their membership function will provide
5

the decision-maker with a priority list of nondominated solutions. This
will guide the decision-maker, given the current operating conditions.
4. Results and discussion

The study investigates the system's performance in three operating
scenarios when voltage stability is incorporated in the conventional OPF
problem. The goal is to improve static voltage stability while meeting
other objectives such as generation cost and loss reduction. Two test
systems, IEEE 30-bus, and IEEE-57 bus were used to investigate the
effectiveness of VSC-OPF on different cases studies of the multiobjective
problem. The test system data is detailed as follows:

(i) IEEE 30-bus, shown in Figure 4(a) consists of 30 buses, 6 gener-
ators, 41 branches, and 4 transformers. The generators are located
at Bus 1, 2, 5, 8, 11, and 13, while transformers are at lines 6–9,
6–10, 4–12, and 27–28. The total connected load is 283.4MW and
126.2MVAR. The detailed data was taken from [30].

(ii) IEEE 57-bus test system includes 57 buses, 7 generators, 80
branches, and 15 transformers. The generators are located at
buses 1, 2, 3, 6, 8, 9, and 12. The total active and reactive loads are
1250.8MW and 336.4MVAR, respectively. The data was obtained
from [31]. The typical single-line diagram is presented in
Figure 4(b).

Tables 1 and 2 show the generator cost functions for IEEE 30-bus and
57-bus respectively.

MATPOWER toolbox in MATLAB was utilized for all power flow and
continuation power flow analyses performed in this study. Five case
studies were used to evaluate the network's performance under various
scenarios. The intention is to demonstrate how the system performswhen
different generation cost, voltage stability, and loss objectives are
considered. The best-case is obtained using the Preference Selection
index (PSI). The mathematical formulations of PSI are provided in [32].
The results obtained from Best Compromise Solutions (BCS) obtained
under the multiobjective studies are used to further assess the



Figure 4. Single line diagram of the: (a)IEEE 30-bus system (b) IEEE 57-bus system.

Table 1. IEEE 30-bus generator cost coefficients.

Gen Bus a b c Pmin Pmax

1 1 0.00375 2.00 0 50 200

2 2 0.01750 1.75 0 20 80

3 5 0.06250 1.00 0 15 50

4 8 0.00834 3.25 0 10 35

5 11 0.02500 3.00 0 10 30

6 13 0.02500 3.00 0 12 40

Table 2. IEEE 57-bus generator cost coefficients.

Gen Bus a b c Pmin Pmax

1 1 0.0776 20 0 0 575.88

2 2 0.0100 40 0 0 100

3 3 0.2500 20 0 0 140

4 6 0.0100 40 0 0 100

5 8 0.0222 20 0 0 550

6 9 0.0100 40 0 0 100

7 12 0.032258 20 0 0 410
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corresponding system voltage, loss, and voltage stability performance.
The summary of case studies used in the comparison is as follows:

(i) Base Case: This case evaluates the system when the power outputs
are not optimized. The system is operated with active and reactive
powers, as presented in Tables 1 and 2.

(ii) Case 0: This case utilizes the inbuilt MATPOWER Interior Point
Solver for the optimal power flow problem. It is a single objective
optimal power flow considering conventional OPF cost function.

(iii) Case 1: This is a multiobjective optimization considering two
objective functions of generation cost and power loss.

(iv) Case 2: This is the second multiobjective problem for two objec-
tives of generation cost and themaximum value of the line Voltage
Collapse Proximity Index minimization.
6

(v) Case 3: This combines all the three objective functions: generation
cost, power loss, and the maximum value of the line Voltage
Collapse Proximity Index.

The listed case studies were performed for the system in three main
operating scenarios described below;

(i) Scenario SC-1: This is the system in normal operating conditions.
IEEE 30-bus is operated with load demands of 283.4MW and
126.2MVAR, while IEEE 57-bus has active and reactive loads of
1250.8MW and 336.4MVAR. The total generation is also pre-
sented in [30] and [31] for IEEE 30-bus and IEEE 57-bus,
respectively.

(ii) Scenario SC-2: This simulates the system in line outage contin-
gency conditions. A ranking of line contingencies based on the line
VCPI was performed to simulate this scenario. This is used to
identify the system's most critical line. For IEEE 30-bus, Line 1–2,
which had the maximum VCPI of 1.3525, was considered for line
outage. For the IEEE 57-bus system, Line 8–9 emerged with the
maximum VCPI of 1.4989 and therefore, was also considered for
line outage.

(iii) Scenario SC-3: This is the system in stressed conditions. Firstly, the
maximum loading was obtained for each system using Continua-
tion Power Flow (CPF) analysis. Then, the load demand was
increased to close or beyond the normal operating point to
simulate the effects of sudden load increase as in the case of faults.
The system load on the IEEE 30-bus was increased by 1.4 as
indicated in Table 3, similar to [4]. For IEEE 57-bus, the load was
increased to 1375.88MW (1.1 times the base load). The purpose
was to simulate two systems in which the level of load increase
differs and thus, comprehensively evaluate the impact of voltage
stability improvement after that.

A summary of all case studies and scenarios considered in this work is
presented in Table 3.

The system control variables considered are generator active and
reactive power outputs, generator and load bus voltages.



Table 3. Summary of all case studies and scenarios conducted.

Scenarios (SC) Details Base Case
0

Case
1

Case
2

Case
3

IEEE 30-bus

SC-1: Normal operating
conditions

Base load conditions Load demand ¼ 283.4 MW and 126.2 MVAR Cost ☑ ☑ ☑ ☑ ☑

Loss ☑ ☑

VCPI ☑ ☑

SC-2: System under contingency
conditions

Maximum VCPI is 1.3525 on Line 1–2. Hence, this line is put out of service Cost ☑ ☑ ☑ ☑ ☑

Loss ☑ ☑

VCPI ☑ ☑

SC-3: System under stressed
conditions

Maximum loadability ¼ 1.3057 p.u..p2pLoad demand increased by 1.4 times. New load ¼
403.8MW and 179.8MVAR

Cost ☑ ☑ ☑ ☑ ☑

Loss ☑ ☑

VCPI ☑ ☑

IEEE 57-bus

SC-1: Normal operating
conditions

Base load conditions Load demand ¼ 1250.8MW and 336.4MVAR Cost ☑ ☑ ☑ ☑ ☑

Loss ☑ ☑

VCPI ☑ ☑

SC-2: System under contingency
conditions

Maximum VCPI is 1.4989 on Line 8–9. Hence, This line is put out of service Cost ☑ ☑ ☑ ☑ ☑

Loss ☑ ☑

VCPI ☑ ☑

SC-3: System under stressed
conditions

Maximum loadability ¼ 0.7153 p.u..p2pLoad demand increased by 1.1 times. New load ¼
1375.88 MW and 370.04 MVAR

Cost ☑ ☑ ☑ ☑ ☑

Loss ☑ ☑

VCPI ☑ ☑
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4.1. Multiobjective optimization

This subsection presents the details of the system performance under
the multiobjective case studies (Case 1–3) for multiobjective OPF. The
Best Compromise Solutions obtained from the pareto fronts have been
presented in bold in Tables 4, 6 and 8.

4.1.1. Case 1
In this case, the aim is to minimize two objective functions: genera-

tion cost in $/hr. and transmission loss in MW. Figure 5(a) depicts the
Pareto optimum solutions for all three scenarios SC-1, SC-2, and SC-3 for
the IEEE 30-bus system and Figure 6(a) for the IEEE 57-bus system.
Additionally, the BCS from each Pareto group of solutions is highlighted
in a red star. As demonstrated in Eqs. (25) and (26), the BCS was derived
from the Fuzzy Decision Making (FDM) theory.

The BCS value for SC-1 for IEEE 30-bus was 841.95$/hr for gener-
ating cost and 5.54MW for transmission loss. The VCPI(max) stability
index for this case was 0.3113, suggesting a steady operating condition.
The cost rises to 868.45$/hr since the generation is increased to
292.26MW in contingency conditions (SC-2). The loss and VCPI(max)
increase to 8.86MW and 0.7545, respectively, due to an increase in line
losses induced by the loss of Line 1–2. However, the system's stability is
preserved. The maximum generation costs, losses, and voltage stability
Figure 5. IEEE 30-bus system pareto optimal so
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index occur when the system is stressed (Cost: 1300.00$/hr, Loss:
15.60MW, and VCPI(max): 1.11). Because 1.11 is over the voltage
collapse point of 1, the system may experience voltage collapse under
higher load situations. Table 4 shows a comparison of Best Compromise
Solutions to the best individual values. As demonstrated in Table 5, the
results achieved here are comparable to those published in other recent
investigations.

Case 1 of the IEEE 57-bus study shows a similar pattern to the 30-bus.
Figure 6(a) demonstrates that when the operating scenario conditions vary
from normal (SC-1) to contingency (SC-2) to stressed (SC-3) conditions, the
generation cost, power loss, and VCPI(max) all increase. Table 6 summa-
rizes the findings of this Case study. Individual optimization still has the
lowest generation cost and loss than multiobjective optimization. The BCS
estimates a generating cost of 42,795 dollars per hour and a power loss of
13.37 MW. In SC-1, this corresponds to a VCPI(max) of 0.9997, near the
stability limit. As seen in Figure 18, the SC-2 and SC-3 stability limitations
are beyond the critical point. Table 7 compares and contrasts the findings
of this study with those of prior studies. MOPSO performs comparably to
the five other algorithms mentioned.

4.1.2. Case 2
The objective functions in this case study are reduction of generation

cost and VCPI(max). All scenarios are considered for analysis for IEEE 30-
lutions for: (a) Case 1 (b) Case 2 (c) Case 3.



Figure 6. IEEE 57-bus system pareto optimal solutions for: (a) Case 1 (b) Case 21 (c) Case 3.1.

Table 4. IEEE 30-bus summary results for individual best and BCS for Case 1.

Case 1

Parameter SC-1 SC-2 SC-3

Individual optimization

Best Cost ($/hr.) 802.39 840.13 1,285.10

Best Loss (MW) 3.58 4.20 13.10

Best Compromise Solution

Best Cost ($/hr.) 841.95 868.45 1,300.00

Best Loss (MW) 5.54 8.86 15.60

Pgen (MW) 288.94 292.26 419.15

Qgen (MVAR) 90.13 107.88 183.48

VCPI (max) 0.3113 0.7545 1.1100

VCPI (sum) 4.1512 5.1728 8.1998

Table 5. Comparison of IEEE 30-bus BCS for Case 1 SC-1 results.

Algorithm Population Size Iterations Power Loss (MW) Fuel Cost ($/h)

MOPSO 50 100 5.5436 841.9512

MOPSO [33] 100 500 4.9785 843.63

PSO [34] 20 200 6.12 850.01

MODA [35] 100 100 4.8143 849.3526

NSGA II [36] 100 300 5.3483 833.5363

MOMICA [37] 120 500 4.5603 848.0544

MOFA-PFA [38] 100 300 4.6727 845.01

MOEA/D [33] 100 500 4.9099 835.36

MOGA [39] 100 300 5.6482 841.05

MOABC/D [40] 100 1000 5.2451 827.636

Table 6. IEEE 57-bus summary results for individual best and BCS for Case 1.

Case 1

Parameter SC-1 SC-2 SC-3

Individual optimization

Best Cost ($/hr.) 41,853.00 42,944.00 47,387

Best Loss (MW) 13.00 18.00 18.00

Best Compromise Solution

Best Cost ($/hr.) 42,795.00 43,912.00 48,024.11

Best Loss (MW) 13.37 21.00 19.62

Pgen (MW) 1265.17 1265.02 1395.50

Qgen (MVAR) 166.63 176.11 202.26

VCPI (max) 0.9997 1.0339 1.3687

VCPI (sum) 12.7856 12.7281 14.4946

Table 7. Comparison of IEEE 57-bus BCS for Case 1 SC-1 results.

Algorithm Population
Size

Iterations Power Loss
(MW)

Fuel Cost
($/h)

MOPSO 50 100 13.37 42,795

APFPA [41] 30 100 12.1513 43,486

MOCS [42] 100 300 11.99 42,176

MODA [35] 100 300 16.2646 41,903

HFBA-COFS [43] 100 300 10.6995 42,122

NSGA-II [43] 100 500 11.129 42,125

DA [44] 40 300 13.6065 42,584
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bus and 57-bus systems, as shown in Figures 5(b) and 6(b). Tables 8 and
10 show the best compromise solutions generated from the Pareto fronts
for 30-bus and 57-bus networks, respectively.

When cost and VCPI(max) are considered objective functions, the
findings for IEEE 30-bus in Table 8 show a total generation cost of 860.16
$/hr for SC-1, compared to 841.95$/hr for Case 1. The addition of
VCPI(max) does not really enhance the system's voltage stability and loss
performance.

Table 9 compares the BCS obtained in this work compared to those
reported in the literature stated. It can be well observed that L-index
provides the lowest values of stability index and highest losses and hence
is not efficient in the fast prediction of voltage collapse. VCPI proves to be
a superior collapse index.

As shown in Table 10 and Figure 6(b), case 2 performance for IEEE
57-bus results in a compromise generation cost of 41,856 $/hr. for SC-1,
43,297 $/hr. for SC-2, and the highest value of 47,868 $/hr. for SC-3
conditions. The VCPI(max) values are 1.466, 0.860, and 1.745, respec-
tively. Table 10 shows the results for loss performance and comparisons
to individual best values. Table 11 compares the results obtained in this
study to those obtained in prior studies. The VCPI index continues to
indicate an imminent collapse quicker than all other indices, including
the LVSI and L-index.

4.1.3. Case 3
Case 3 examines the system's performance while considering all of the

generating cost, power loss, and VCPI(max) objectives. Figures 5(c) and
6(c) show the Pareto fronts for the three operational scenarios for IEEE
30- and 57-buses, respectively.

IEEE 30-bus performance under normal operating conditions shows a
generating cost of 903.93 $/hr, a power loss of 4.42 $/hr, and a VCPI(-
max) of 0.3502. Case 3 findings indicate an increase in generation cost
while loss and VCPI(max) decrease in all operating conditions SC-1, SC-2,
and SC-3 (see Table 12).

Compared to cases 1 and 2, the tri-objective function for IEEE 57-bus
shows a modest rise in cost in SC-1 and SC-2. Opposed to Case 2, the



Table 8. IEEE 30-bus summary results for individual best and BCS for Case 2.

Case 2

Parameter SC-1 SC-2 SC-3

Individual optimization

Best Cost ($/hr.) 802.92 840.65 1,288.30

Best VCPI(max) 0.3058 0.4091 0.9000

Best Compromise Solution

Best Cost ($/hr.) 860.16 868.91 1,309.10

Best VCPImax 0.4450 0.7774 1.0200

VCPI (sum) 4.7968 5.2159 8.6677

Pgen (MW) 288.93 292.37 421.68

Qgen (MVAR) 90.20 107.98 192.91

Loss (MW) 5.53 8.97 17.88

Table 9. Comparison of IEEE 30-bus BCS for Case 2 SC-1.

Algorithm Stability
Index

Fuel Cost
($/h)

Power Loss
(MW)

Max of
Index

Sum of
Index

MOPSO VCPI 860.1559 5.53 0.445 4.7968

WEA [45] L-index 847.331 9.3141 0.1099 -

Mjaya
[46]

L-index 801.0117 8.7715 0.12485 -

MSA [24] L-index 804.4838 9.9486 0.13917 -

Table 10. IEEE 57-bus summary results for individual best and BCS for Case 2.

Case 2

Parameter SC-1 SC-2 SC-3

Individual optimization

Best Cost ($/hr.) 41,738 41,754 47,371

Best VCPI(max) 1.025 0.724 1.365

Best Compromise Solution

Best Cost ($/hr.) 41,856.00 43,297.01 47,868.16

Best VCPI(max) 1.4658 0.8596 1.4229

VCPI (sum) 13.7839 14.0564 14.6862

Pgen (MW) 1269.61 1271.81 1396.06

Qgen (MVAR) 174.97 190.78 202.77

Loss (MW) 17.61 20.01 20.18

Table 11. Comparison of IEEE 57-bus BCS for Case 2 SC-1.

Algorithm Stability
Index

Fuel Cost
($/h)

Power Loss
(MW)

Max of
Index

Sum of
Index

MOPSO VCPI 41,856 17.613 1.4658 13.7839

MOPSO
[25]

L-index 41,607 13.3730 0.2018 -

Jaya [47] L-index 43,684 12.912 0.2302 -

DA [44] L-index 42,584 13.6065 0.2638 -

DA-PSO [1] LVSI 41,828 16.63 0.8731 13.82

Table 12. IEEE 30-bus summary results for individual best and BCS for Case 3.

Case 3

Parameter SC-1 SC-2 SC-3

Individual optimization

Best Cost ($/hr.) 802.96 840.09 1,285.50

Best Loss (MW) 3.51 4.31 13.10

Best VCPI(max) 0.31 0.42 0.90

Best Compromise Solution

Best Cost ($/hr.) 903.93 923.73 1,309.30

Best Loss (MW) 4.42 5.50 14.90

Best VCPI(max) 0.3502 0.5153 0.9840

VCPI (sum) 4.4019 4.5358 8.0510

Pgen (MW) 287.85 288.90 418.47

Qgen (MVAR) 86.24 96.16 181.02

Table 13. IEEE 57-bus summary results for individual best and BCS for Case 3.

Case 3

Parameter SC-1 SC-2 SC-3

Individual optimization

Best Cost ($/hr.) 41,883.00 42,934.00 47,379

Best Loss (MW) 13.00 18.00 18.00

Best VCPI(max) 0.924 0.644 1.000

Best Compromise Solution

Best Cost ($/hr.) 42,830.00 46,374.13 49,510.29

Best Loss (MW) 13.20 18.58 18.74

Best VCPI(max) 0.9970 0.7920 1.1285

VCPI (sum) 12.1290 13.2320 14.0734

Pgen (MW) 1265.01 1269.38 1394.62

Qgen (MVAR) 166.31 181.23 197.94
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voltage stability improves significantly in Case 3, with the VCPI(max)
falling to 0.9965 for SC-1, 0.792 for SC-2, and 1.1285 for SC-3. Case 3
also has the least amount of power loss when contrasted to Cases 1 and 2
(see Table 13).
1 Please note the VCPI(max) figures were rounded off in the graph due to the
1e4 factor on the x-axis. For actual values, see Tables 6, 10, 13.
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4.2. System performance under different operating conditions

This section includes comparison studies between the case studies for
each scenario considered. The purpose is to provide a general contrast in
the system's performance when different objectives of generation cost,
stability, and loss are considered. The obtained Best Compromise Solu-
tions (BCS) obtained under themultiobjective studies are used to perform
further system analyses in this section. For all scenarios, the best case
obtained using the PSI has been made bold in Tables 14, 15, 16, 17, 18
and 19.

Contingency conditions alter the system configuration, making it
more unstable and insecure. As stated earlier, the contingency ranking
was obtained from themaximum value of the line VSI. On the other hand,
sudden increased load conditions create stressed system conditions. In
such scenarios, the reactive power demand is highest. Consequently, the
system is forced to operate close to or beyond stability limits.

4.2.1. Scenario SC-1 (normal operating conditions)

4.2.1.1. IEEE 30-bus. Under this scenario, the system is operated in
normal conditions as presented in Table 14 and Figure 7. As expected, the
lowest costs (802.20$/hr.) are encountered in the single-objective opti-
mization since only one objective function is minimized. The addition of
voltage stability increases costs in Case 2 and 3 since active power out-
puts from the generators are being increased to ensure system stability.
Case 3 costs (903.926 $/hr.) are highest because the highest active power
increase of 118.95% (from 11.36MW for Case 0–24.86MW in Case 3) is
encountered at bus 13, which is the most expensive generator. Regarding
voltage stability, Case 1 encounters the lowest VCPI index of 0.3113,
although this comes at a slightly higher power loss. Multiobjective
optimization of the three objectives simultaneously offers the most



Table 14. IEEE 30-bus summary results for different case studies under normal conditions (SC-1).

SC-1

Cases Total Cost ($/hr.) Total Pgen (MW) Total Qgen (MVAR) Ploss (MW) Power Loss (%) VCPI (max) VCPI (sum) PSI Rank

Base 875.283 300.96 133.93 17.56 6.20% 1.3525 7.5736 0.5997 5

Case 0 802.204 292.86 103.98 9.46 3.34% 0.9001 6.0016 0.7316 4

Case 1 841.951 287.18 84.25 5.54 1.96% 0.3113 4.1512 0.9450 2

Case 2 860.156 288.93 90.20 5.53 1.95% 0.4450 4.7968 0.8800 3

Case 3 903.926 287.85 86.24 4.42 1.56% 0.3502 4.4019 0.9562 1

Figure 7. IEEE 30-bus SC-1 summary of system performance.
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optimal variable outputs in cost, loss, and voltage stability, hence the
highest PSI index of 0.9562.

Using the VSI as a single objective function in [1] yielded a much
higher cost of 971.55 $/h compared to the 903.926 $/hr. obtained for the
best case in Table 14. Additionally, the power loss obtained in Table 14
(4.42 MW) is still lower than the reported value of 4.7236 MW in [1].
Therefore, multiobjective VSC-OPF has proven more efficient for the
system operation of the IEEE 30-bus in normal operating conditions.

4.2.1.2. IEEE 57-bus. A considerable cost reduction of 32.32% is real-
ized when only the generation cost function is minimized as in Case 0, as
shown in Table 15 and Figure 8. Voltage stability is compromised in this
case, as stability is not a priority in the goals. Thus, in Case 0, the system
is doomed to collapse due to the VCPI(max) value of 1.5180, which is
more than the collapse point of 1. Case 2, which emphasizes cost and
VCPI minimization, is also at risk of collapsing because the system loss,
which is not prioritized in the objectives, eventually compromises
generator outputs, causing the system to become unstable. Hence its
VCPI(max) of 1.4660. However, a stable voltage condition in this system
is still realized when the three functions of cost, loss, and voltage stability
are all optimized at once. This is illustrated with Case 3, with a voltage
stability index of 0.9970. The lowest losses of 13.199MW (1.06%) are
still realized with this case study since the loss is also prioritized. Hence,
the system outputs are increased to ensure loss minimization and a stable
voltage system. Case 3 is the preferred case with the highest PSI of
0.9963.
10
These results are similar to those obtained in [1], where 44,054.27
$/hr cost. was obtained using the LVSI index. Similarly, the single
objective optimization of the LVSI index summation yielded a voltage
stability improvement of 7.55% compared to the 34.32% obtained in the
multiobjective Case 3 (using Case 0 for comparison). Using the multi-
objective optimization also has the advantage of a lower cost of 42,
830.00 $/hr. and power loss of 13.199MW compared to the 13.55MW in
[1].

4.2.2. Scenario SC-2 (contingency conditions)

4.2.2.1. IEEE 30-bus. With Line 1–2 out of service on IEEE 30-bus, the
generated active power at Generator 1 increases by 16.50% (from 260.96
MW to 304.03MW). The reactive power also generated significantly in-
creases (118.11%) to maintain bus voltages within allowable limits. The
losses also significantly increase on Line 1–3 to 37.999 MW from
3.108MW due to overloading caused by loss of Line 1–2. All these factors
culminate into an unstable system with the highest costs represented by
the Base costs of 1052.68 $/hr., shown in Table 16 and Figure 9. Opti-
mization of these parameters shows that the generator active powers can
be minimized to a total generation of 288.9 MW with the lowest loss of
1.94%, as in Case 3. The system is also most stable in this case study, with
a VCPI(max) of 0.5153. This implies that multiobjective optimization is
significant in preventing possible system collapse under contingency
conditions, as can be seen in the low values of VCPI(max) for Cases 1–3.
Therefore, multiobjective optimization provides the most balanced



Table 15. IEEE 57-bus summary results for different case studies under normal conditions (SC-1).

SC-1

Cases Total Cost ($/hr.) Total Pgen (MW) Total Qgen (MVAR) Ploss (MW) Ploss (%) VCPI (max) VCPI (sum) PSI Rank

Base 61667.15 1288.962 253.833 27.864 2.23% 1.4990 16.8340 0.6747 5

Case 0 41737.79 1267.312 227.301 16.512 1.32% 1.5180 13.6890 0.8449 4

Case 1 42795.00 1265.170 166.630 13.365 1.07% 1.0000 12.7860 0.9850 2

Case 2 41856.00 1269.610 174.970 17.613 1.41% 1.4660 13.7840 0.8645 3

Case 3 42830.00 1265.010 166.310 13.199 1.06% 0.9970 12.1290 0.9963 1

Figure 8. IEEE 57-bus SC-1 summary of system performance.
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system operation for the IEEE 30-bus under line outage contingency
conditions optimally. This is validated under Case 3, with the highest PSI
index of 0.9839.

The optimized values for Case 3 are largely comparable to those ob-
tained by [1]. The cost of 923.73 $/hr. is lower compared to the 972.72
$.hr. obtained in [1]. More so, the loss results in Case 3 (5.50 MW) are
still lower than those obtained in the literature stated (5.21 MW).
Whereas [1] used the minimization of LVSI sum as the objective function,
the tri-objective optimization has proven superior in enhancing system
operating conditions while assuring system security.

4.2.2.2. IEEE 57-bus. When Line 8–9 is put out of service for this sce-
nario, the system active power generation increases to 1311.91 MW
from 1278.66 MW. The increase mainly occurs at the generator on Bus
1. The reactive power also increases by 35.80% to maintain system bus
voltage magnitudes. However, the system losses increase by 119.29%
Table 16. IEEE 30-bus summary results for different case studies under Contingency

SC-2

Cases Total Cost ($/hr.) Total Pgen (MW) Total Qgen (MVAR) Plos

Base 1052.68 344.03 292.11 60.6

Case 0 843.22 296.15 122.18 12.7

Case 1 868.45 292.26 107.88 8.86

Case 2 868.91 292.37 107.98 8.97

Case 3 923.73 288.90 96.16 5.5
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due to the strain imposed on lines 6–8 and 7–8. In these conditions, the
system is prone to collapse, as evidenced by the VCPI(max) value of
1.7150, as shown in Table 17. However, optimizing the system pa-
rameters in this scenario shows that multiobjective case studies 2 and 3
can maintain system stability, as seen by the lower VCPI(max) values in
Figure 10. The system loss can also be significantly reduced to about
1.49%, as realized in Case 3. Even though the highest generation costs
are incurred in Case 3, the system can achieve the optimum operating
condition in terms of costs, loss, and voltage stability. As such, Case 3
emerges as the best case to operate IEEE 57-bus in contingency condi-
tions, hence the highest PSI of 0.9737. This is similar to the results
presented in [1], where a slightly lower cost of 46,415.52 $/hr. was
obtained from the minimization of the LVSI sum as the objective func-
tion. The losses obtained of 17.63 MW are also slightly lower than those
obtained in Table 17. This confirms the robustness of the VCPI index in
OPF problems.
Conditions (SC-2).

s (MW) Ploss (%) VCPI (max) VCPI (sum) PSI Rank

3 21.39% 2.5781 10.4734 0.4602 5

5 4.50% 1.0317 5.9958 0.7449 4

3.13% 0.7545 5.1728 0.8380 2

3.17% 0.7774 5.2159 0.8325 3

0 1.94% 0.5153 4.5358 0.9839 1



Table 17. IEEE 57-bus summary results for different case studies under Contingency Conditions (SC-2).

SC-2

Cases Total Cost ($/hr.) Total Pgen (MW) Total Qgen (MVAR) Ploss (MW) Ploss (%) VCPI (max) VCPI (sum) PSI Rank

Base 42964.86 1264.15 173.55 61.11 4.89% 1.7150 25.1667 0.6993 5

Case 0 42674.33 1281.16 239.11 30.36 2.43% 1.3651 17.0553 0.7738 4

Case 1 43912.00 1265.02 176.11 21.00 1.68% 1.0339 12.7281 0.9356 3

Case 2 43297.01 1271.81 190.78 20.01 1.60% 0.8596 14.0564 0.9423 2

Case 3 46374.13 1269.38 181.23 18.58 1.49% 0.7925 13.2322 0.9737 1

Figure 9. IEEE 30-bus SC-2 summary of system performance.
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4.2.3. Scenario SC-3 (stressed conditions)

4.2.3.1. IEEE 30-bus. The active power rises to 443.63 MW in this sce-
nario to handle the increased load. The generated reactive power also
increases to 273.39 MVAR to provide voltage support to the reactive
loads. In these conditions, the power loss is significantly high to about
9.86% due to the high need for reactive power and increased stress on the
lines. The optimization of system parameters presented in Table 18 and
Figure 10. IEEE 57-bus SC-2 sum
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Figure 11 indicates a significant reduction in generation costs due to
optimizing generator active power outputs. The least active and reactive
power requirements occur in Case 0. This also translates to the least
losses and the most voltage stable condition. Hence, the single optimi-
zation case (case 0) is optimal to operate the IEEE 30-bus in stressed
conditions. This can be attributed to the fact that the system needs to
meet the required demand in such disturbance conditions. Hence utilities
ought to focus on increasing the generation and reactive power needs.
mary of system performance.



Table 18. IEEE 30-bus summary results for different case studies under stressed conditions (SC-3).

SC-3

Cases Total Cost ($/hr.) Total Pgen (MW) Total Qgen (MVAR) Ploss (MW) Ploss (%) VCPI (max) VCPI (sum) PSI Rank

Base 1516.19 443.63 273.39 39.83 9.86% 2.3267 12.1116 0.62129 5

Case 0 1305.85 416.58 176.66 12.78 3.16% 0.9822 7.8038 0.99927 1

Case 1 1300.00 419.15 183.48 15.6 3.86% 1.1100 8.1998 0.92757 3

Case 2 1309.10 421.68 192.91 17.88 4.43% 1.0228 8.6677 0.89459 4

Case 3 1309.30 418.47 181.02 14.9 3.69% 0.9840 8.0510 0.95492 2

Figure 11. IEEE 30-bus SC-3 summary of system performance.
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The voltage stability and loss objectives would be directly enhanced upon
matching the supply to the demand.

Consequently, multiobjective optimization may not be a priority
when undergoing significant stress. It is important to note that the
multiobjective results obtained in this scenario are similar to those ob-
tained by Adewuyi et al. in [4]. The IEEE 30-bus assessed in stressed
conditions using the Critical Boundary Index (CBI) revealed a total cost of
1310.90 $/hr. for Case 2 comparable to 1309.10$/hr. obtained in
Table 18 using VCPI.

4.2.3.2. IEEE 57-bus. The system performance of the IEEE 57-bus in
stressed conditions is indicated in Table 19. Figure 12 presents the
variable comparisons. Using a factor of 1.1 p.u., the system significantly
increased the system load, causing the power generation to increase to
1417.28 MW to meet the increased demand. These conditions also
escalate the stress on the lines, increasing the losses by 48.58%. The
Table 19. IEEE 57-bus summary results for different case studies under stressed cond

SC-3

Cases Total Cost ($/hr.) Total Pgen (MW) Total Qgen (MVAR) Plo

Base 65,906.23 1,417.28 250.49 41.

Case 0 49,873.62 1,389.51 249.15 17.

Case 1 48,024.11 1,395.50 202.26 19.

Case 2 47,868.16 1,396.06 202.77 20.

Case 3 49,510.29 1,394.62 197.94 18.
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active power generation is decreased from the base case by 1.96% for
Case 0, 1.54% for Case 1, 1.50% for Case 2, and 1.60% for Case 3. All
the optimization case studies also minimize transmission losses by
57.80%, 52.61%, 51.25%, and 54.73% lower than the base case for
Case 0, Case 1, Case 2, and Case 3, respectively. Moreover, Cases 0, 1, 2,
and 3 cost 24.33%, 27.13%, 27.37% and 24.88% lower than the base
case, respectively. The VCPI(max) and VCPI(sum) values are also
improved with the most voltage stable case in Case 0. According to the
PSI ranking (0.9628), the single optimization case (Case 0) gives the
best cost, active and reactive power generation, loss, and voltage sta-
bility. This is because in stressed conditions, such as fault scenarios, the
system's active and reactive power demands are enormous. Therefore,
the goal is to try as much as possible to meet the demand. Hence, the
priority is the optimization of generator outputs. As in Cases 1–3, the
addition of other objective functions does not necessarily improve the
system condition.
itions (SC-3).

ss (MW) Ploss (%) VCPI (max) VCPI (sum) PSI Rank

401 3.01% 1.6587 20.5108 0.6747 5

471 1.27% 1.0000 13.8159 0.9628 1

618 1.43% 1.3687 14.4946 0.9229 3

181 1.47% 1.4229 14.6862 0.9109 4

742 1.36% 1.1285 14.0734 0.9585 2



Figure 12. IEEE 57-bus SC-3 summary of system performance.
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4.3. Impact on voltage stability

4.3.1. Bus voltage magnitude
It is good to mention that all bus voltage magnitudes are respected in

all the scenarios and case studies, as shown in Figures 13, 14. MAT-
POWER lower and upper limits of 0.94 p.u. and 1.06 p.u. were main-
tained in all analyses. In normal operating conditions, IEEE 30-bus had
the lowest voltage at Bus 30 (weakest bus) at 0.992 p.u. and highest at
Figure 14. IEEE 57-bus voltage magnitu

Figure 13. IEEE 30-bus voltage magnitu
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Bus 11 (1.082 p.u.). All optimization results provided bus voltages within
acceptable ranges, as shown in Figure 13, with an average improvement
of 0.11%, 0.99%, 0.17% in normal, contingency, and stressed conditions,
respectively.

Similarly, for IEEE 57-bus, the lowest bus voltages were obtained at
the weakest Bus 31 (0.936 p.u.) and highest at Bus 48 (1.06 p.u.) in
normal operating conditions. Bus 31 voltage drops to 0.919 p.u. after the
loss of Line 8–9, and to 0.892 p.u. in stressed conditions. Figure 14 shows
des for: (a) SC-1 (b) SC-2 (c) SC-3.

des for: (a) SC-1 (b) SC-2 (c) SC-3.



Figure 15. IEEE 30-bus PV Curves for Bus 30 for scenarios: (a) SC-1 (b) SC-2 (c)SC-3.

Figure 16. IEEE 57-bus PV Curves for Bus 31 for scenarios: (a) SC-1 (b) SC-2 (c)SC-3.
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that an average improvement of 0.330%, 0.992%, and 1.337% is realized
in normal, contingency, and stressed conditions, respectively.

4.3.2. Maximum system loadability (PV curves)
The PV curves for the weakest buses all case studies and scenarios are

shown in Figures 15 and 16 for IEEE 30-bus and IEEE 57-bus, respec-
tively. In the normal conditions for IEEE 30-bus, Case 1 offers the largest
loadability margin improvement of 10.41%, improving the stability
margin by 3.56%, hence increasing the system security. During contin-
gency conditions, the system loadability is lowest in the base case (0.172
p.u.). However, an improvement of over 610% is realized on average in
all the cases, with the highest occurring in Case 3. The margin of the
Figure 17. IEEE 30-bus voltage stability performance for
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voltage stability is also improved by an average of 31.58% across Case
0–3. In stressed conditions, significant loadability margin enhancement
of 10.67%, 11.67%,10.26%,11.81% for Case 0, Case 1, Case 2 and Case 3
respectively, is also achieved.

For the IEEE 57-bus system, the simulation results indicate a signifi-
cant improvement in the voltage stability margin. During system dis-
turbances, the system load margin increases up to a maximum of 7.31%
(Case 3) and 40.46% (Case 0) for contingency and stressed conditions,
respectively. The critical voltage also reduces by 1.42 % (Case 3) during
the loss of Line 1–2, making the system more secure and stable for
operation.
different scenarios by: (a) VCPI(max) (b)VCPI(sum).



Figure 18. IEEE 57-bus voltage stability performance for different scenarios by: (a) VCPI(max) (b)VCPI(sum).
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4.3.3. Minimization of the VCPI index
As discussed in sections 4.1 and 4.2, Figures 17 and 18 summarize the

achieved voltage stability margin improvement by minimizing the
Voltage Collapse Proximity Index. The figures show that the multi-
objective optimization (Case 3) achieves the biggest VCPI improvement
of 74.1% and 80.01% during normal and contingency conditions for the
IEEE 30-bus. However, the single objective optimization (Case 0) alone
can achieve the desired system voltage stability level during stressed
conditions, improving it by 57.79%, in comparison to the base case.
Similar improvement is achieved in the IEEE 57-bus, with Case 3 indi-
cating VCPI reduction of up to 33.52% and 53.72% during normal and
line outage conditions. Case 0 still achieves the most voltage stability
improvement of 39.71% in stressed conditions.

5. Conclusion

In this paper, amultiobjective voltage stability-constrainedoptimal power
flow is presented. The approach proposed incorporated the Voltage Collapse
Proximity Index (VCPI) in the conventionalOPFproblemtoenhance the static
voltage stability margin while simultaneously reducing system losses and
generationcost.Minimizationofgenerationcost, transmissionpower loss, and
lineVCPIareused todevelop themultiobjective functions. Lower indexvalues
indicate greater improvements in voltage stability.

The standard IEEE 30-bus and 57-bus systems were employed to
investigate the impact of different operating scenarios on the control
variables. The Preference Selection Index indicated that the multi-
objective function of minimizing generation cost, power loss, and
VCPI(max) achieved the best-optimized generation cost, power loss, and
voltage stability during normal and contingency conditions. The single
optimization technique proved to be the most optimal and secure way of
operating the system for stressed conditions. There is a significant de-
mand for reactive power in these conditions as the generator reactive
power outputs are all maxed out. Hence, a singular focus on one objective
function would be more appropriate. Therefore, it is observed that the
presented multiobjective optimization control approach can be consid-
ered an effective preventive measure for normal and line outage con-
tingency conditions, thus preventing an imminent voltage collapse.
Hence, the approach can be applied in Energy Control Centres to enhance
system stability and security.

However, with stressed conditions such as faults in the system, the pro-
posed multiobjective technique faces difficulty since the system still lacks
enough reactive power support. It is recommended that for future studies,
incorporating Flexible ACTransmission Systems (FACTS) in the VSC-OPF can
be investigated to evaluate the operational efficiency of the system.
16
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