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SUMMARY

Carbon nanotubes (CNTs) have unique properties, such as their electrical conductivity, that enable them to be combined with
conducting polymers to form composites for use in organic solar cells (OSCs). It is envisaged that the improved composite has
a higher efficiency of green energy and will reduce the cost of these cells. The use of such alternative energy sources also
drastically reduces overuse of fossil fuels and consequently limits environmental degradation. This review compares research
and performance between conventional silicon solar cells and OSCs. It also discusses OSC photoexcitation and charge carrier
generation with the incorporation of CNTs, physicochemical properties of the composites and other factors that affect the
efficiencies of OSCs. In addition, properties of CNTs that favour their dispersion in polymer matrices as acceptors and charge
carriers to the electrodes are covered. The effects of CNTs containing dopants, such as nitrogen and boron, on charge transfer
are discussed. Also, the fabrication techniques of OSCs that include CNT/polymer composite processing and the methods of
film deposition on the substrate are described. Finally, the case studies of OSCs containing polymers with single-walled
CNTs, double-walled CNTs or multi-walled CNTs are evaluated. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Renewable energy accounts for approximately 16% of the
primary energy sources used globally, while the rest is
from less favourable options such as fossil fuels and
nuclear power [1]. The primary factors in sourcing new
and alternative sources of energy are ensuring positive
and strong social economic development and the provision
of abundant and reliable energy for domestic, industrial
and various other economic sectors and also to harness
enough energy to meet the demand of the growing popula-
tion [2]. Globally, there is an intense interest and focus on
the development of technologies that can use renewable
sources of energy such as biomass [3,4], geothermal
[5,6], solar [7], wind [8,9] and hydropower [10,11]. Some
of the reasons for this can be attributed to the concerns
surrounding energy security, the environment, sustainability,
the drive for affordable energy services and the need to in-
crease accessibility to economically viable energy options,
especially where they lack in developing countries [2].

The usage of fossil fuels leads to environmental pollution
through the release of greenhouse gases [12], and land

degradation during exploration and mining. This in turn
has been linked to acid rain, depletion of the ozone layer,
harsh and sometimes unpredictable climatic conditions, the
occurrence and spread of tropical diseases and other
problems that adversely affect not only humans but also
animals and plants. These appalling conditions can destroy
fragile ecosystems, especially marine and aquatic life [2].
Despite these severe disadvantages of using fossil fuels, the
implementation of renewable energy technology remains a
challenge. This is mainly due to the intermittent nature of
some renewable energy sources and geographically
constricted environments (e.g. lower solar insolation at
higher latitudes or impracticality of hydroelectric generation
in arid and semi-arid regions). Moreover, in developing
nations, heavy investments in infrastructure development
are a challenge, and there are uncertainties and financial risk
factors associated with renewable technologies [4,5,7].

Implementation and utilization of renewable energy
technologies has several advantages including reliability
and localization, diversification of energy supply, energy
security, new wealth creation opportunities and a signifi-
cantly smaller negative impact on the environment. In
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addition, harnessing renewable energy at the local level
will negate the vulnerabilities due to distant political up-
heavals, encountered in fossil fuel-producing regions.
Furthermore, increased energy security through alterna-
tive greener sources would be advantageous, especially
when supplies of various nonrenewable fuels dwindle
and as demand increases. The ‘norm’ to circumvent this
requires more costly explorations and potentially more
dangerous extraction operations, which in turn increase
the cost of energy. This makes investment in renewable
energy technologies a better and more timely option.

Renewable technologies have zero emission of pollutants
and utilize smaller amounts of water, thus destressing
overburdened water resources. Moreover, they offer sustain-
able options for decentralization of energy supplies and
thereby provide new opportunities in rural development
and boost various agricultural activities [2,3]. Interestingly,
most investments on renewable energy are on materials
and workmanship to build and maintain facilities, rather
than more energy input. This also means that because most
of the resources are spent locally, there is a potentially huge
foreign exchange savings that could be extremely beneficial
especially in developing nations, which are often cash-
strapped [13].

Amongst all of the various options available as
renewable sources of energy, solar energy has some key
advantages, especially when considering developing
nations within Africa. Africa has some of the highest
solar insolation-receiving regions on the planet because
of its location in the tropics where incoming solar
radiation mostly strikes the ground at an angle of 90°
almost throughout the year [14]. Solar energy is free
and clean; it does not produce waste, is ecologically
acceptable and is directly convertible to other forms of
energy. These advantages far outweigh the production
of mild chemical waste that accompanies the manufacture
of solar energy conversion technologies.

1.1. Solar energy

The earth receives 120,000TW every hour from the sun and
the estimated global energy requirement per year is approx-
imately 13TW [15]. Therefore, harnessing 0.01% of the
energy the earth receives from the sun every hour will meet
and surpass the annual global requirement and at the same
time leave enough room for further growth and development
to meet future needs. The technologies available for
harnessing solar energy can be broadly categorized into
two main areas. These are concentrating solar power [16]
and solar photovoltaics (SPVs). In its simplest form,
concentrating solar power focuses thermal energy from the
sun into a heat transfer fluid by using mirrors. The heat
generated is recovered to produce steam, which eventually
is used to drive turbines and generate electricity. On the
other hand, in SPV, electromagnetic energy is converted
directly to electricity. Photons from the sun excite electrons
in donor molecules, and these electrons are transferred to
electrodes to generate electricity.

In developing countries, SPV technologies are one of
the most attractive and elegant options available to
provide energy. This is especially true for Africa, where
the population is scattered over vast regions and where
different groupings have divergent and dynamic electric-
ity needs within various rural areas. In addition, the
provision and maintenance of conventional electricity
grids would be extremely challenging owing to environ-
mental, economic, technical or a combination of some
or all of these factors.

1.2. Inorganic versus organic solar cells

Currently, silicon-based cells have dominated commercial
solar cell devices with approximately 90% of the global
market share. Several factors account for this trend includ-
ing both technical (e.g. silicon processing is a mature and
reliable technology) and economic (widespread, commer-
cially available technologies for silicon device manufacture)
reasons. However, in terms of efficiencies, current research
efforts have demonstrated that multijunction concentrator
devices have overall efficiencies of over 30%, followed by
crystalline silicon (~25%) [17], single-junction (~20.3%)
[18], thin-film technology (~15%) [19] and eventually
emerging photovoltaic (PV) devices, which include dye-
sensitized and organic solar cells (OSCs) with efficiencies
of less than 10% [13]. This is well illustrated in Figure 1,
which shows efficiencies of different types of solar cells
and their timelines on best research [13].

Silicon solar cells (SSCs), either crystalline (monocrys-
talline [20–22] and polycrystalline [23,24]) or amorphous
[25,26], are generally expensive to manufacture and
require a significant investment in labour and facilities.
The main component, solar-grade silicon, is produced via
several chemical steps, and a detailed description of the
process is beyond the scope of this review. However, a
brief and basic procedure involves the reduction of raw
quartz with carbon to produce metallurgical silicon,
which is relatively cheap to produce, but this is an
energy-intensive process. The metallurgical silicon is then
refined by converting the silicon to chlorosilanes (using
HCl), and these are subsequently transformed, by using a
chemical vapour deposition (CVD) process, into electronic
or solar-grade silicon (i.e. the well-known Siemens
process). There are other recent techniques that use plasma,
or direct metallurgical processes, but these current technol-
ogies are energy intensive and can have detrimental effects
on the environment [27–29]. These main drawbacks limit
the implementation of silicon-based PV manufacturing
within developing economies (many tropical countries,
including South Africa). In the light of these challenges
and circumstances, OSC technologies are favourable.

In general, OSCs can be described simply as PV devices
made from polymers, small organic molecules or a combi-
nation of both with or without some kind of nanomaterial
incorporated into the overall device. Mostly, these devices
are based on polymeric materials and can thus be assembled
by using well-known polymer-processing techniques. This
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means they are relatively simple to fabricate into various
shapes and sizes (Figure 2) [30], are easily adapted and
designed for niche applications, and can be assembled on
various substrates and produced cost-effectively [31].

The basic architecture of an organic-based solar cell
includes an active layer sandwiched between two transport
layers that conduct holes or electrons and two electrodes
that encase the whole structure, for harnessing the power
generated. The active layer generates electron–hole pairs
when excited by light, and at the interface between the
transport layers and the active layer, the electron–hole
pairs are separated, and these charge carriers are eventually
collected by the electrodes and used to power the system of
interest [32–36].

With silicon-based solar cells, separation of charge
carriers occurs across a p–n junction, and this is enhanced
by doping the material on either side of the junction. A

similar scenario is encountered with other inorganic-based
solar cells (e.g. CdTe, GaAs and CuInGaSe). With PV
devices, ideally photon absorption excites an electron to the
conduction band, which leads to the production of electron–
hole pairs commonly known as excitons (electrostatically
charged carriers). Excitons are characterized by a coulombic
force (F) as shown in Equation 1 [37].

F ¼ q1 q2
4πr2 εε0

(1)

where q is the charge, r is the distance between charges, ε is
the dielectric constant and ε0 is the permeability in the free
state.

The theory and application in terms of physics and
chemistry of inorganic systems are very well developed.
In contrast, OSC’s is still under intense investigation.

1.3. Photoexcitation and carrier generation
in organic solar cells

With OSCs, the mechanism that leads to the separation of
the electron–hole pair is a more complex process and is still
an area under intensive investigation, but one of the key
factors concerning their functionality is the heterojunction.
The mechanism that leads to the generation of excitons, sep-
aration and final production of a useful photocurrent has
been discussed recently in the literature [17,32,33]. The
research findings reported so far indicate that photons, with
the requisite energy, excite electrons within the donor mole-
cule from the highest occupied molecular orbital (HOMO)
to the lowest unoccupied molecular orbital (LUMO). This

Figure 2. Organic solar cell cast on a flexible substrate. It can be
stretched, rolled or even curved in any direction [30].

Figure 1. Timeline for best research and efficiencies for different solar cells reported so far [13].
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produces excitons, polaron pairs, radical ion pairs or more
generally a charge transfer complex, which can be envis-
aged to be analogous to the electron–hole pair in inorganic
PV materials. The photoexcited charge transfer complex
must then move (by either migration or diffusion) to the
donor–acceptor (D–A) interface. The transfer of energy via
charge transfer complexes may involve one or more
transformations within the donor molecule, and similarly,
there may be several energetic transition state complexes
involving the donor, acceptor or combination of both at
the D–A interface. The energy levels, HOMO and LUMO,
within the donor are slightly higher than those of the
acceptor. This is necessary to facilitate transfer of energy
to the acceptor and reduce recombination within the donor.
Thermal, radiative or electronic losses are possible near or
at the D–A interface, but the generation of photocurrent
occurs when the charge transfer complex separates into
electron and hole charge carriers, with electrons in the
acceptor material and holes in the donor, and eventually,
they are collected at the electrodes [32,33,36].

1.3.1. Calculating efficiencies in organic solar cells
Photovoltaic properties for OSCs and SSCs are governed

by the determination of the current–voltage of the cell; this
is achieved by calculating either the power conversion
efficiency (PCE) or the external quantum efficiency (EQE)
of the cell. EQE is the ratio of collected charge carrier
(electrons) per incident photon [38]. PCE of a cell is the
efficiency of the cell under illumination of a standard light
source or the percentage of solar energy exposed to a cell
that is converted to electrical energy or electricity. A high
PCE percentage translates to high output of that cell, and
this can be improved by the development of new materials
(e.g. conducting polymers with a low band gap) or device
architecture [single junction, tendon cell and bulk
heterojunction (BHJ)] [33]. Equation 2 shows how PCE is
calculated.

η ¼ Voc IscFF

Pin
(2)

where Voc is the open-circuit voltage, Isc is the short-circuit
current, Pin is the incident light power and FF is the fill
factor. The fill factor measures the quality of the solar cell
as a power source. It is the ratio between the maximum
power delivered to an external circuit and the potential power
of that cell and is determined as shown in Equation (3).

FF ¼ VmaxImax
VocIsc

(3)

where Vmax is the maximum electromotive force in an
electric circuit and Imax is the maximum rate of electron flow
in an electric circuit.

A graphical relationship between Voc, Isc, Vmax and Imax

is shown in Figure 3.

1.3.2. Physicochemical factors that affect the
efficiency of organic solar cells

Organic solar cells have low PCE and are short-lived
when compared with SSCs, and this limits their practical
application [31]. The short lifetime is due to chemical
and physical degradation of the active layers and
electrodes. Chemical degradation involves chemical
changes within the organic materials or on the electrodes
due to the presence of oxygen and moisture (Figure 4)
[40]. Physical degradation is usually caused by charge ac-
cumulation, morphological changes or diffusion of metal
into the active layer [31]. Electrodes degrade by oxidation,
delaminating, dedoping and interfacial organometallic
chemistry. Active layers degrade via photochemical reac-
tions, thermochemical reactions, morphological changes

Figure 3. Relationship between Voc, Isc, Imax and Vmax in the
dark and under illumination. The shaded area is used to deter-

mine Vmax and Imax [39].

Figure 4. Degradation of the active layer due to the presence of
oxygen and water, as well as diffusion of metal electrode
particles into the active layer. Oxygen and water enter the

device during the fabrication process [40].

Carbon nanotubes for organic solar cellsG. Keru, P. G. Ndungu and V. O. Nyamori

1638 Int. J. Energy Res. 2014; 38:1635–1653 © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/er



and inclusion of impurities [41]. Degradation can also
occur because of low photostability of the active layer–
electrode interface, and this can be minimized by depositing
a thin film of electron extraction layer and hole extraction
layer between the active layer and the electrodes [42]. It
has been reported that an active layer with chemically active
side groups is more susceptible to degradation than one
without. Jorgensen et al. [34] were able to show that
degradation due to oxidation usually occurs at the side
groups. Low PCE with OSCs can also be due to efficiency
loss that occurs in the first few hours of exposure to the
atmosphere known as burn-in [41]. This crucial loss in
functionality can be ascribed to photochemical reactions in
the active layer and the development of trap states within
the band gap [41]. Performance also reduces because of
other mechanisms, which include trap-mediated recombina-
tions, reduced hole mobility and build-up of charge in
various trap states.

One of the main limiting factors in achieving high PCE
in OSCs is the recombination mechanisms that occur at the
D–A interface. Some of the methods developed to mini-
mize recombination include improving device morphology
[43], using modified D–A materials [44], manipulating
electrode materials [45] and even enhancing optical
absorption [46]. Zhang et al. [47] have reported a signifi-
cant reduction in recombination losses by doping the active
layer poly(3-hexylthiophene) (P3HT)/(6,6)-phenyl-C61-
butyric-acid methyl ester (PCBM) with 1/2 spin galvinoxyl
radicals at the D–A interface, which increases the PCE of
the device by ~340%.

Another factor that affects the efficiencies of OSCs is the
band gap of the conjugated polymers. When the band gap of
the semiconducting conjugated polymer is large, only a
small portion of the incident solar energy is absorbed. For
example, a polymer with a band gap of ~2.0 eV can only
absorb 25% of the solar energy. Reduction of the band
gap to ~1.2 eV enhances absorption to between 70% and
80% [48] as shown in Figure 5. For maximum absorption,

a smaller band gap is favourable. Of interest is to make
use of low-energy-band-gap materials with a value of band
gap energy (Eg) of 1.5 eV or less so that absorption will
occur at 600 nm or greater in the neutral state [38].

Efficiencies of OSCs can be improved by incorpora-
tion of carbon nanotubes (CNTs) in the BHJ. For
example, Somani and co-workers reported improvement
of cell performance by many fold by incorporation of
double-walled CNTs (DWCNTs) to P3HT [49]. CNTs
can be a good material at the interface because they have
a high affinity for electrons and also transport electrons to
the electrodes unlike fullerenes, which are only good
electron acceptors [50]. CNTs have also found use as
transparent electrodes for hole collection owing to their
high work function, replacing indium tin oxide (ITO).
However, this is a topic of another review, and we
recommend the reader to references [51–55]. Arena and
co-workers reported that efficiency conversion of hybrid
cells based on a conjugated polymer and doped silicon
increased by 0.49% upon dispersion of CNTs in the
conjugated polymer layer [56]. Efficiencies of OSCs can
be enhanced further by using CNTs with heteroatom
dopants such as boron or nitrogen. Doping of CNTs with
nitrogen or boron to form N-CNTs or B-CNTs introduces
defects that change the structural, chemical and electronic
properties [57]. Lee and co-workers reported a high
efficiency of 5.29% by incorporating N-CNTs in OSCs.
The cell had an efficiency of 4.68% before incorporation
of N-CNTs [58].

2. INCORPORATION OF CARBON
NANOTUBES IN ORGANIC SOLAR
CELLS

Inclusion of conducting nanostructures like CNTs in the
BHJ enhances charge separation and improves transfer of
charge carriers to the electrodes before they recombine.
CNTs can combine with the π-electrons of conjugated
polymers to form D–A-type solar cells [59]. Here, the CNTs
do not only act as electron acceptors but also improve the
dissociation of excitons by providing an enhanced electric
field at the CNT/polymer interface, which suppresses the
recombination of photogenerated charges. CNTs in the
BHJ of a polymer matrix result in high electron mobility,
which exceeds that of any other semiconductor [60]. Like-
wise, hole transport is also enhanced because of induced
crystallinity of poly(3-octylthiophene) (P3OT) or other
conducting polymers. Highly ordered supramolecular
organization of the conducting polymer ensures higher hole
mobility via interchain transport [60].

Carbon nanotubes are dispersed in a solution of donor
polymer before being spin-coated on the substrate. The
substrate is usually a transparent electrode consisting of a
transparent conductive oxide of which ITO is an example
[30]. Firstly, a hole conducting layer of poly(3,4-eth
ylenedioxylthiophine) : poly(styrenesulfonate) is depos-
ited, which helps in selective hole injection to the ITO

Figure 5. The solar spectrum together with the absorption
spectra of two polymers showing the limitation of absorption
due to the band gap size. The blue line shows the absorption
of a polymer with a band gap of ~2 eV and the red of ~1.2 eV.

The black line represent AM 1.5 illumination [48].
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electrode as illustrated in Figure 6. An active layer
consisting of the donor–acceptor is then deposited. Conju-
gated polymers, like P3HT or P3OT, are used as the donor
components because of their ability to form semicrystalline
films when cast on a substrate [39], while fullerenes or
CNTs can be the acceptor. Thermal annealing at a temper-
ature above the polymer glass transition temperature al-
lows the alignment of the polymer chains, thereby
improving charge transfer. The top electrode is vacuum
evaporated and is usually a metal of lower work function
(as compared with ITO), such as calcium or aluminium,
and sometimes with an ultrathin lithium fluoride
underlayer [61].

Sometimes, a third component like a dye is incorporated
into the active layer to improve the PV properties of a cell.
Bhattacharyya et al. [62] used the dye N-(1-pyrenyl)
maleimide (PM) in the single-walled CNT (SWCNT)/
P3OT composite to form a cell ITO/P3OT-SWNCTs+
PM/Al that improved the cell efficiency by two orders of
magnitude. The group attributed this increase to efficient
charge carrier transfer as illustrated in Figure 7.

Doping CNTs with boron or nitrogen selectively
enhances charge mobility and dispersibility in the
polymer matrix and also tunes the work function [63].
For effective charge transfer, the work function of the
CNTs should be close to the HOMO and LUMO of the
donor and receiver, respectively [64]. B doping reduces
the Fermi-level energy of the CNTs and at the same time
increases the work function [65]. Upon B doping, the
work function increases to 5.2 eV from 4.6 eV of pristine
CNTs, which is very close to the HOMO of the P3HT
(5.1 eV) donor [64]. This makes it very easy to inject a
hole to the B-CNT for eventual transfer to the electrode.
However, doping CNTs with electron-rich nitrogen
increases the Fermi-level energy and reduces the work
function in comparison with pristine CNTs [63]. For N-
CNTs, the work function is 4.4 eV, which is very close

to the LUMO of the receiver PCBM (4.2 eV) in OSCs.
An electron can easily move from the LUMO of PCBM
to N-CNTs because of the short distance between the
LUMO of PCBM and the work function of N-CNTs
(~0.2 eV), electrons are then to be transferred to the
electrode. At the same time, use of either B-doped or
N-doped CNTs in the BHJ of a polymer matrix makes
charge recombination almost impossible. Mismatch of
energies between the HOMO of the donor and N-CNTs
and the LUMO of the receiver and B-CNTs makes
it hard for dissociated charges to recombine as the hole
is received by B-CNTs and electrons by N-CNTs [58].
B-doped or N-doped CNTs improve the Isc and PCE of
a cell and also help in the alignment of CNTs in the
polymer matrix because of local polarities induced on
the walls of CNTs and because the defects caused by
the heteroatoms converts them from nonconducting to
conducting materials [39,65].

2.1. Advantageous properties of carbon
nanotubes for organic solar cells

Carbon nanotubes are synthesized in a number of different
ways depending on the resources available and research
objective. However, most methods are a variation on
either the arc discharge [39], laser ablation [66] or CVD
method [67–69]. The CVD method is the most preferred
technique because it is easy to implement and scale up
[70,71]. The synthesis technique has a direct impact on the
final properties of the CNTs. The arc discharge and laser
ablation techniques favour SWCNTs or highly graphitic
multi-walled CNTs (MWCNTs). CVD methods usually
produce MWCNTs; however, SWCNTs and DWCNTs
can be grown.

When CNTs are incorporated into a polymer matrix, the
resulting nanocomposites have significantly different physi-
cal–chemical properties than the original polymer material.
The importance of the physical–chemical properties of CNTs

Figure 6. A schematic diagram showing the sandwiched active
layer between the electrodes in OSCs with CNTs as acceptors
within the active layer. Inset: high magnification of the active

layer showing how polymer wraps onto CNTs [30].

Figure 7. Movement of charge carriers between the energy
levels of the donor polymer (P3OT) and dye with the eventual
transfer of an electron to the SWCNT. Because the work func-
tion of the SWCNT is slightly lower than the LUMO of the dye,

the transfer of an electron is easy [62].
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in the polymer matrix and the significance of incorporating
CNTs in OSCs are discussed in the next section.

2.2. Physicochemical properties of carbon
nanotubes

Carbon nanotubes are good conductors of electricity, and
their conductivity is 1000 times that of copper [70], and
thus, when incorporated into a polymer matrix such as that
for OSCs, they can provide an excellent and robust
network for the transfer of charge carriers to the electrodes
by providing a percolating path [72]. Semiconducting
CNTs also generate excitons upon absorption in the near-
infrared region of the electromagnetic spectrum [73]. This
has the potential to increase the number of excitons
generated within a device and results in a greater number
of disintegrations to electrons and holes when incorporated
into OSCs. CNTs have a high aspect ratio (>1000:1), and
therefore, very little is required to form composites with
physicochemical properties that are very different from
those of the parent polymer [73]. They have outstanding
mechanical properties [74], a high surface area-to-volume
ratio [75] and relatively small diameters, which have made
these materials very useful as additives to make high-
strength composites [76].

2.2.1. Electronic properties of carbon nanotubes
Single-walled CNTs can have either metallic or

semiconducting properties depending on the orientation
of the graphene sheets, which are rolled to make the
individual tube [77]. In a perfectly aligned SWCNT,
there is overlap of π-orbitals in the individual six-mem-
bered rings. This overlap provides a delocalized space
for the movement of electrons, and the SWCNTs are
deemed conductors. The conductivity can change to
semiconducting when the alignment of the six-mem-
bered rings is distorted, and thus, the π-orbital overlap
is changed. The direction of the graphene sheet plane
and the nanotube diameter are obtained from a pair of
integers (n, m) that denote the nanotube type [78]. In
the armchair configuration, the integers are equal
(n =m), and in the zigzag orientation, one of the inte-
gers is equal to 0 (m or n = 0), and when the tube is
described as chiral, the integers are nonzero and
nonequal (n≠m). Armchair-type tubes are metallic,
while all other orientations are semiconducting [79].
At high temperatures, the electrical conductivity of
SWCNTs can be described by using semiclassical
models used with graphite, while at low temperature,
they reveal 2D quantum transport features [80]. How-
ever, it is very difficult to predict the electrical proper-
ties of MWCNTs because rolling up of the graphene
layers can differ from one layer to the other and their
more complex structure increases the possibility of
defects, which can alter the electronic properties.

In terms of electrical properties, some recent reviews
have highlighted the limitations encountered when
incorporating SWCNT structures into OSCs [81–84].

Nevertheless, the key consideration is the inhomogeneity
of a sample of SWCNTs. Typically, after synthesizing
and purifying SWCNTs, the samples contain a mixture of
semiconducting and highly conducting tubes. Thus,
some of the tubes may enhance charge carrier transfer
to the electrodes, and some may act as sites for recombi-
nation of charge carriers. These limitations may be
overcome in the near future, with improvements in the
synthesis of SWCNTs to control chirality or in separa-
tion methods.

When CNTs, multi-walled or single walled, are
incorporated into a polymer matrix, the resulting nano-
composites can have electrical properties that differ from
their parent materials. This depends on whether the loading
or weight per cent of CNTs is above or below the percola-
tion threshold. Conductivity increases drastically when the
amount of CNTs is at or above the percolation threshold.
Bauhofer and Kovacs have reviewed percolation thresh-
olds for CNT/polymer composites [85]. The percolation
threshold is known to be influenced by dispersion, aspect
ratio, purity and alignment of the CNTs [86]. Also, it has
been suggested that it is easier for well-dispersed CNTs
to form an electrical path owing to homogeneous disper-
sion [85]. Higher electrical conductivity leads to increased
photocurrents, which improve the overall efficiency of the
cell device [87].

The electrical properties of SWCNTs and MWCNTs
can be tuned to a certain extent, whereby the HOMO and
LUMO match the donor and acceptor polymers appropri-
ately, and thus, these materials can be incorporated into
the OSC architecture as electron or hole carriers within
the donor or acceptor polymer matrix or as transparent
electrodes [88].

2.2.2. Mechanical properties of carbon nanotubes
Carbon nanotubes are made of sp2 carbon–carbon

bonds, and these continuous networks within a tubular
shape make them some of the strongest and most resil-
ient materials known to exist. CNTs have a theoretical
Young modulus on the scale of terapascals, and the
tensile strength of these materials has been measured
to be upwards of 100s of gigapascals. To offer some
perspective on such numbers, CNTs are often compared
with steel, with simple descriptors stating they are 100
times stronger than steel but weigh six times less
[78,89–91]. In addition, CNTs are also very flexible
and can bend over 90° several times without breaking
[92]. They undergo permanent structural changes at
high pressures (>1.5 GPa), but below these values,
deformation is usually totally elastic [80]. Also in the
radial direction, CNTs have a much lower Young mod-
ulus of 10s of gigapascals, and the tensile strength in
the radial direction is lower with values of ~1GPa.
The mechanical strength of CNTs increases the strength
of the CNT/polymer composite [78,89–91,93,94] and
can be of interest to OSCs [72]. The transfer of the
mechanical properties of the CNTs to the polymer
matrix or the change in mechanical properties from
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those of the parent materials to the new composite of-
fers new possibilities in the design and implementation
of solar cells in general. The use of lighter and stronger
materials means that larger-surface-area PV systems can
be assembled on structures that cannot support the
weight of some inorganic systems. In addition, the flex-
ibility would allow for greater options in design and
implementation, for example, OSCs on a bridge column
or any other highly curved surface. However, in order
to achieve excellent mechanical properties with poly-
mer/CNT nanocomposites, the CNTs need to be func-
tionalized in order to debundle them and to facilitate
dispersion in a solution or polymer matrix.

2.2.3. Thermal properties of carbon nanotubes
Among the carbonaceous materials, CNTs are more

stable to oxidation than activated carbon or amorphous
carbon at high temperature. The thermal behaviour is differ-
ent in SWCNTs and MWCNTs. SWCNTs are more
thermally stable than MWCNTs because they have more
defined structure and less deformations [90]. The
thermoconductivity of CNTs in the axial direction is higher,
while in the radial direction, it is an insulator. The estimated
thermoconductivity at room temperature is 7000Wm�1

K�1 [95]. This is comparable with that of diamond;
therefore, inclusion of CNTs in the polymer matrix forms
a thermally conductive percolating network enhancing
thermal conductivity [96]. For OSCs, this can improve
thermal conductivity, and hence, it may reduce thermal
degradation problems.

2.2.4. Chemical properties of carbon nanotubes
Generally, CNTs are chemically inert, but the curvature

on the surface of the tubes enhances their reactivity
compared with a flat graphene sheet [97]. Mismatch
between the π-orbitals in the CNT walls brings about
reactivity enhancements. CNTs with small diameters are
more reactive than ones with bigger diameters [97]. The
slight reactivity of CNTs allows surface modification, and
this is accomplished by acid oxidation to introduce

oxygen-containing group functionalities on the wall surfaces
[98], which increases solubility in polar solvents and also
increases their compatibility with some polymeric matrices
[93]. Further modification is possible through covalent
chemistry and examples include fluorination, ozonolysis
or acrylation [78]. These modifications of CNTs are
known as functionalization and are discussed in the next
section.

2.3. Functionalization of carbon nanotubes

Raw CNTs are not usually used to make CNT/polymer
composites without treatment to eliminate impurities like
amorphous carbon, metal particles and graphitic nano-
particles, all of which interfere with the desired properties
or end product [99]. These impurities can be removed by
gas-phase oxidation [100], acid treatment [101], annealing
and thermal treatment [102,103], ultrasonication [99],
magnetic separation [99], microfiltration [102] or a
combination of two or more of the aforementioned
methods [104].

As previously mentioned, incorporation of CNTs in a
conjugated polymer has potential use in OSC fabrication
as it improves the mechanical, thermal and electrical
properties of the polymer [62]. However, for improved
interfacial bonding and good dispersion of the CNTs in a
conjugated polymer or solvent, surface modification is
required. Surface modification can either be covalent or
noncovalent [105]. Table I shows how these two types of
functionalization are achieved.

2.3.1. Noncovalent functionalization
Noncovalent modification involves physical adsorp-

tion of the polymer chain on the walls of the CNTs
through interaction of the delocalized π-electronic
structure of CNTs and the delocalized π-electronic
structure of conjugated polymer chains [109]. Interaction
between the π-electronic systems of the polymer chains
and the CNT walls breaks the van der Waals forces
between individual CNTs. Typically, CNTs aggregate

Table I. Surface functionalization of carbon nanotubes.

Type of
functionalization

Method of
functionalization Reagents

Damaging effect on
carbon nanotubes References

Noncovalent Sonication followed
by in situ polymerization

Dianhydride monomer Yes [106]

Surfactant-aided
modification

Sodium dodecyl
sulfonate

No [107,108]

Wrapping Polyvinylpyrrolidone No [109]
Covalent Solution treatment

(usually acid oxidation)
Concentrated H2SO4 : HNO3 (3:1) Yes [110,111]

Ball milling Gases, for example,
H2S, NH3, CO and COCl2

Yes [112,113]

Plasma treatment N2/Ar microwave plasma
treatment to introduce N2 on the wall

No [114]
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into bundles owing to the dispersion forces between
individual tubes, and the high aspect ratio means the
bundles can be very difficult to break up, hence the use
of ultrasound probe techniques during processing. The
interaction between the polymer chain and individual
CNTs modifies the conformation of the polymer and can
lead to helical wrapping around the CNT. Noncovalent
functionalization does not interfere with the conjugated
system of the CNTs, and therefore, the desired properties
are retained [115].

2.3.2. Covalent functionalization
Covalent functionalization or a chemical modification in-

troduces functional groups covalently bonded to the back-
bone structure of the CNTs and contributes to better
dispersion of CNTs within the polymer matrix. It also
improves the chemical affinity of CNTs, which assists in
the processing of the CNT/polymer composite and
improves the mechanical and electrical properties of the com-
posite [115]. However, covalent functionalization can alter
the electronic properties of CNTs in an unfavourablemanner,
and this can have an unfavourable effect on the final OSCs.

3. ASSEMBLING SOLAR CELLS

The production of OSCs with CNTs involves a number of
steps including processing of the conjugated polymer/CNT
composites and deposition of these composites onto a
suitable substrate.

3.1. Processing conjugated polymer/carbon
nanotube composites

Good dispersion and adhesion of the CNTs with the polymer
matrix play an important role in incorporating the excellent
properties of CNTs in the polymer matrix [86]. There are
several methods of processing CNT/polymer composites,
which include solution mixing, melt blending and in situ
polymerization. Effective utilization of CNTs in composite
applications depends on their ability to disperse individually
and homogenously within the polymer matrix. Interfacial
interaction between the CNTs and the polymer matrix results
in efficient load transfer. It also affects the alignment of
individual tubes in the polymer matrix [115]. Well-aligned
tubes are reported to interact well with the polymer matrix,
which enhances conductivity and increases the mechanical
strength of the composite [116].

3.1.1. Solution processing
The general procedure involves dispersion of CNTs

in a suitable solvent by energetic agitation, followed
by mixing of polymer and nanotubes in solution by
mechanical agitation. The solvent is then allowed to
evaporate under controlled conditions, and the CNT/
polymer composite is left behind [86]. Energetic agita-
tion can be brought about by shear intensive mechanical
stirring, magnetic stirring or ultrasonication [115].

Prolonged use of high-powered ultrasonication can in-
troduce defects on the nanotube walls and reduce their
sizes, which affects their properties [86]. Bhattacharyya
et al. [62] processed a P3OT/SWCNT composite by so-
lution processing. The CNTs were dispersed in chloro-
form by high-powered ultrasonication, the P3OT
solution in chloroform was added to this dispersion
and the mixture was then sonicated. The chloroform so-
lution was left to evaporate. Geng and Zeng similarly
prepared a composite P3HT with SWCNTs by solution
processing [117].

Nogueira and co-workers prepared a composite of
SWCNTs and thiophene by using solution processing
[118]. However, in their case, they first dried the oxidized
SWCNTs and then followed by refluxing them with 3M
nitric acid to introduce carboxylic acid groups. Thionyl chlo-
ride was then added, and the mixture was stirred to introduce
acyl chloride groups. Thereafter, 2(2-thienyl)ethanol was
added to form an ester named SWCNT-THIOP. The product
was dispersed in toluene, the polymer P3OT was added, the
mixture was stirred and the toluene evaporated, leaving the
composite that they characterized.

3.1.2. Melt processing
This method involves heating the polymer above its

melting point to form a viscous liquid and introducing
the CNTs by shear mixing. The method is good for
insoluble polymers that are impossible to prepare by
solution processing. It is the most compatible method
with current industrial practices such as injection mould-
ing, blow moulding, extrusion and internal mixing. In
particular, this technique is very useful when dealing with
thermoplastic polymers, which soften when heated [119].
Socher et al. [120] used melt mixing to incorporate
MWCNTs and carbon black together as fillers in polyam-
ide 12. The aim was to study the synergistic interaction
effect of the two conductivity fillers. They reported higher
volume conductivities for samples with the two fillers
together although no synergistic effect was reported at
the percolation threshold.

Figure 8. Illustration of knife coating (A) and slot-die coating (B).
The coat is deposited on the web as it passes [127].
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3.1.3. In situ processing
The method involves dispersion of CNTs in a mono-

mer solution. Polymerization takes place to form the poly-
mer/CNT composite and is usually good for polymers that
are not soluble or are thermally unstable. In situ polymer-
ization can prepare composites that are covalently or
noncovalently bound to the nanotubes [86]. Because of
the small size of monomer molecules, the homogeneity
of the resulting composite adducts is much higher than so-
lution mixing of polymer and CNTs. It also allows prep-
aration of composites with a high CNT weight fraction
[115]. The advantage of this method is the high reactivity
of monomers that makes it efficient and controllable and
enables designable tailored processing.

Koizhaiganova et al. [121] synthesized a P3HT/DWCNT
composite by in situ polymerization to enable interfacial
bonding and proper dispersion of the CNTs in the polymer
matrix. They reported impressive conductivity values and
recommended the use of the composite as a PV cell mate-
rial. The same group had earlier reported the synthesis of a
P3OT/DWCNT composite by in situ polymerization [121]
and reported that the inner walls of the DWCNTs retained
their intrinsic properties, while the outer walls were
involved in the formation of the composite with the
polymer. This explains why composites are popular in solar
cells. Kim et al. [122] synthesized MWCNT/P3HT compos-
ites by in situ polymerization. They reported that the
MWCNTs provide good conductivity even at low loading.
Impressive conductivities and mobility values of the
composite make it suitable for use in PV materials.

3.2. Film deposition techniques

Carbon nanotube/polymer composite processing is followed
by deposition or coating onto a suitable substrate in order to
fabricate OSCs. Deposition techniques involve depositing a
thin film of material on a substrate or previously deposited
layers. The key issue is to have control on the layer thick-
ness to a few tens of nanometres. The following are some
of the methods used to deposit the organic films on the
substrates.

3.2.1. Spin coating method
This involves dosing CNT/polymer composite on the

substrate that rotates, distributing the composite homoge-
neously on the surface owing to centrifugal forces. The
substrate spins until the composite dries up, and the final
thickness is controlled by the frequency of the spin, com-
position and properties of the material as well as the drying
conditions. Spin-coating parameters are interdependent on
each other; for example, an increase in spin frequency
results in a lower film thickness, higher drying rate and
higher shear rate [123]. Nagata et al. [124] used spin
coating to prepare a BHJ OSC with coplanar interdigitized
electrodes. Vairavan and co-workers used spin coating to
deposit the active layer of poly[2-methoxy-5-(2-et
hylhexyloxy)-1,4-phenylenevinylene], CdTe and CdS
hybrid on a substrate, and the PCE of the device increased

by 0.05% [125]. Singh et al. [126] used spin coating of
P3HT, functionalized SWCNTs and PCBM composite on
a substrate at ambient conditions and formed a cell with a
photoefficiency of ~1.8%.

3.2.2. Knife coating and slot-die coating method
These techniques involve continuous deposition of a wet

layer along the length of the web without contact with the
coating head and the web. Coating is a result of feeding
the CNT/polymer composite suspension to a meniscus that
stands between the coating head and the web (Figure 8).
Coat thickness control is superior to printing. Knife coating
is very similar to doctor blading, and laboratory results show
that it can be transferred quite readily to roll-to-roll knife
coating [127]. An ink reservoir before the knife in the knife
coating process serves as a supply to the meniscus with new
ink; as the web passes by, it gradually deposits.

In the case of slot-die coating, the suspension is supplied
to the meniscus via a slot and a pump.With this method, it is
also possible to coat stripes of a well-defined width along
the web direction, and hence, it is one of the only film-
forming techniques that inherently allows for 1D patterning.
This aspect has enabled the very convincing demonstration
of slot-die coating for the manufacture of polymer solar
cells. It is possible to control and adjust the coat layer by
controlling the speed of the web or the CNT/polymer
suspension supply. Wengeler and co-workers investigated
knife and slot-die coating to process a polymer nanoparticle
composite for hybrid polymer solar cells [123]. They
reported that knife-coated solar cells showed efficiencies
comparable with those of spin coating, which demonstrates
scalability because knife coating is compatible with the roll-
to-roll technique.

3.2.3. Inject printing and spray-coating method
With these types of wet-film techniques, a coat is formed

without contact between the substrate and the printing head.
CNT/polymer composite suspension droplets are ejected into
the free space that exists between the nozzle and substrate.
The coat thickness can be controlled by printing multiple
layers or adding more composite suspension to one spot
[127]. Girotto et al. [128] used both spray and spin coating
to compare composite performance. They demonstrated that
spray coating is an excellent alternative to spin coating. Peh
et al. [129] reported spray coating as a high-throughput coat-
ing technique that is scalable and adaptable for organic
photovoltaic manufacturing. They argued that, to ensure
uniform coating of the organic layer, the wettability,
surface tension and boiling point of the solvent require
optimization. Kang and co-workers used a spray-coating
process to deposit electron-selective and hole-selective
layers in an inverted OSC [130].

3.2.4. Dip coating technique
Materials used for dip coating are dissolved in an

appropriate solvent such as toluene, chloromethane or
chlorobenzene [131]. The substrate is soaked upright by
allowing full coverage by the solution. Then the substrate
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is removed slowly from the solution and the liquid allowed
to flow by gravity. A natural drying process follows, and the
film coat on the substrate is formed.

3.2.5. Other printing techniques
Other techniques include gravure printing [132,133],

flexographic printing [134], screen printing [135] and
rotary screen printing [127]. They involve transferring the
motif to a substrate by physical contact between the object
carrying the motif and the substrate.

4. CASE STUDIES

There are several examples in the open literature where
authors have investigated the use of CNTs in OSCs.
Case studies where CNT/polymer composites have been
used in the fabrication of OSCs are briefly highlighted,
and some important developments in the field, based on
SWCNTs, DWCNTs or MWCNTs as examples, are
discussed in the subsequent section.

4.1. Single-walled carbon nanotubes

A composite consisting of a polycarbonate polymer and a
5wt% loading of SWCNTs was found to increase the con-
ductivity by four orders of magnitude compared with the
pristine polymer [136]. SWCNTs combined with poly(2-
methoxyl-5-(2-ethoxylhexyloxy)-1,4-phenylenevinylene)
in the ratio 1:1 and with a Voc of 0.4V and Jsc of 1μmA
cm�1 achieved an FF of 43% [137]. A SWCNT composite
with P3OT was synthesized to determine the effect of the
SWCNT loading. A 15% loading was found to be the most
favourable because the hole mobility increased 500 times
compared with pristine P3OT [138]. Acid-functionalized
SWCNTs were found to enhance the conjugation length
of P3HT, thereby improving the absorption capacity. A de-
vice fabricated from these materials had a photoconversion
of ~1.8% [126]. SWCNTs when combined with P3HT-b-
PS formed a device with increased photoresponse. This
could be attributed to enhanced exciton dissociation and
charge carrier separation [139]. Acid-treated SWCNTs co-
valently combined with aminothiophene through amide
bonds to form a SWCNT–CONHTh composite showing
an efficiency of 1.78%, while the pristine SWCNTs had
an efficiency of 1.48% and thiophene without SWCNT
had an efficiency of 1% [140]. Integration of SWCNTs
by simple and direct thermocompression in a polyethylene
polymer formed a composite with good optical transpar-
ency and conductivity [141]. When SWCNTs formed a
composite with P3HT, charge carriers were found to be
long-lived in the polymer matrix owing to the improved
interfacial electron transfer [142].

4.2. Double-walled carbon nanotubes

Double-walled CNT/P3OT composite conductivities were
compared with CNT loadings between 1% and 20% to
determine the suitability of the composite as a photoactive

material. The conductivity increased with CNT loading,
and 20% was reported to have the highest conductivity of
1.52 × 10�3 S cm�1. The high conductivity of the compos-
ite makes it suitable for use as a photoactive layer in a PV
cell [121]. Inclusion of DWCNTs in the active layer
consisting of P3HT/C-60 increased the performance of
the cell owing to increased charge transport and reduced
recombination [59].

4.3. Multi-walled carbon nanotubes

A composite of MWCNTs and doped polyaniline (PANI) in
its emeraldine salt was synthesized by in situ polymerization.
The conductivity increased by 50–70% compared with pris-
tine PANI. The increase was attributed to the presence of car-
boxylic acid groups on the walls of the MWCNTs, which
improved dispersion [143]. To determine the best MWCNT
loading in the polymer matrix for efficient conductivity, a
composite of PANI andMWCNTs was synthesized by oxida-
tive in situ polymerization. A 2wt% loading of acid-function-
alized MWCNTs gave the highest conductivity [144].
Polymer composites of poly(3,4-dihexyloxythiophene) and
poly(3,4-dimethyloxythiophene-co-3,4-dihexyloxythiophene)
with MWCNTs, conjugated by low energy band gap, were
synthesized. A high conductivity of 16S cm�1 was attained
at 30% loading [38]. Sulfonated PANI forms a water-soluble
and conducting composite with MWCNTs that was surface
functionalized with phenylamine groups by in situ polymeri-
zation. The conductivity increased by two orders ofmagnitude
compared with that of pristine MWCNTs [145]. A composite
of pristine MWCNTs and poly[(2-methoxy-5-(2′-
etheylhexyloxy)-1,4-phenylene] was formed by solution
mixing [146]. Photoluminescence quenching and increased
absorbance were some of the attributes of the composite
formed. The electrical conductivity threshold of this compos-
ite was noted at 0.5% MWCNT loading; however, higher
loading than this formed a dense network of nanotubes that
acted as a nanomeric heat sink. Additional examples are given
in Table II.

5. CONCLUSION

From the discussion, CNT/polymer composites have been
shown to possess improved mechanical, conduction and
electrical properties than the original polymer from which
they were made. CNTs have also been found to enhance
OSC efficiency owing to the improved dissociation of
excitons and electron transfer to the electrodes. However,
these efficiencies are still very low when compared with
SSCs, and more research is required to improve on the
same. The research should focus more on the synthesis of
copolymers, whose absorption will cover a wider range
of the solar spectrum and with improved environmental
stability, which is another challenge in OSCs. Further re-
search is also required on the synthesis of CNTs, especially
SWCNTs, to ensure metallic conductors and semiconduc-
tors are synthesized as different products. When the
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product is a mixture of metallic conductors and semicon-
ductors, postsynthesis separation is difficult. In addition,
when a mixture of the two is used to form a composite
for OSCs, the metallic type is reported to short circuit,
thereby lowering efficiency. Easier and more efficient
methods of synthesizing DWCNTs also need to be
explored. Doped CNTs in polymer composites could be
better conductors than pristine CNTs when used in OSCs
and, thus, should be intensively investigated as currently
data on these are limited.
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