
International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-9 Issue-2, July 2020

1132

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B4131079220/2020©BEIESP

DOI:10.35940/ijrte.B4131.079220



Abstract—Enormous development has been experiences in the

field of text and image extraction and classification. This is due to

large amount of image data that is generated as a result of

document sharing for collaborative software development and

electronic storage of design documents. One of the recent

technique for analyzing large dataset and discover underlying

patterns is Deep learning technique. Deep learning is a branch of

Machine learning inspired by human brain functionality for the

purpose of analyzing unstructured data including images, sound

and text. Unified Model Language (UML) is an architectural

design which provides developers with a view of software

components and scope. UML contain texts and notations which

are mostly analyzed and interpreted manually for the purpose of

system implementation and scope or size measurement.

Consequently, manual processing of electronic design artifacts is

prone to bias, errors and time consuming. Various researchers

have attempted to automate the process of reading and

interpreting design artifacts but still there is a challenge due to

varying style of designing these artifacts. This study propose an

automatic tool based on existing deep learning algorithms

including ResNet50 CNN to read UML interface and sequence

diagrams images to detect UML arrows, EAST test detector to

detect text, Tesseract OCR with Long Short-Term Memory

(LSTM) to recognize text and Multi-class Support Vector

Machine to classify text for the purpose of measuring Service

Oriented Architecture size. We subjected the tool to accuracy tests

which returned encouraging results.

Keywords — Unified Modeling Language, Machine Learning,

Deep Learning, image classification, text extraction.

I. INTRODUCTION

Digital image processing has become an important field of

research due to vast amount of digital documents and images

available currently in databases. Due to large volumes of

digital information, human capacity to interpret digital

documents and images is challenged requiring automation to

capture details more efficiently and effectively.

Consequently, researchers have made great contribution in

this area by introducing techniques that have improved the

accuracy and speed of extracting information from digital

content [1].

Revised Manuscript Received on July 30, 2020.

* Correspondence Author

Samson Wanjala Munialo*, Department of Information Technology,

Meru University of Science and Technology, Meru, Kenya. Email:

sammunialo@gmail.com

Geoffrey Muchiri Muketha, Department of Computer Science,

Murang‟a University of Technology, Murang‟a, Kenya. Email:

gimuchiri@gmail.com

Kelvin Kabeti Omieno, Department of Information Technology and

Informatics, Kaimosi Friends University College, Kaimosi, Kenya. Email:

komieno@kafuco.ac.ke

Design artifacts such as Unified Model Language (UML),

Computer Aided Design (CAD) diagrams, maps, civil

architectural diagrams and flowcharts are available in digital

format which offers opportunity for interpreting these

documents automatically based on algorithms such as

machine learning techniques. Automated reading and

interpretation brings more benefits including enhanced

sharing of interpretation results with other applications and

other users for further processing [2]. One of the most

popular design artifacts used in Software engineering is

Unified Modeling Language (UML). UML is a standard

general purpose language developed by Object Management

Group (OMG) to provide a visual representation of a software

system. UML is not only used to model and document

software systems but also to enable visualization of software

scope or size [3] Various researchers have made use of UML

to design and determine the system size[4][3][5] but the

process of interpreting UML diagrams is done manually

which compromise on interpretation accuracy. Software size

measurement is an important activity as it provides the basis

for planning and management of software development[4]

[6]. With the growing demand for interoperability and agility,

organizations are shifting to Application Programming

Interface (API) applications such as Service Oriented

Architecture (SOA) to adapt to changes in the dynamic

business environment [7] [8] [9]. SOA architectural

differences as compared to traditional software applications

compelled researchers to introduce COSMIC-SOA [10] and

SOA – Size Metrics (SOASM) [3] specifically to measure

size of SOA applications. SOASM is one of the metrics that

utilizes Unified Modeling Language (UML) diagram to

identify attributes that contributes to SOA size [3].

Furthermore, with systems designers and developers working

in collaboration at different sites they require sharing of

design artifacts such as UML and CAD as images to enable

collaborative design. It is from these backdrops that

necessitate the need to automate the process of interpreting

design artifacts to reduce human interpretation which is

biased, less accurate and time consuming. Researchers have

proposed automated tools to interpret design artifacts to

improve on artifacts interpretation accuracy and time. Most

Object Oriented Programming languages IDE have

incorporated automatic conversion from UML to XML for

further processing [11]. However, they are not able to read,

interpret and convert UML from image files. Secondly,

conversion to XML only focuses on UML implementation to

a specific programming language and thus it cannot interpret

UML for other purpose such as software size measurement.

Karasneh & Chadron

Automated Feature Extraction from UML

Images to Measure SOA Size

Samson Wanjala Munialo, Geoffrey Muchiri Muketha, Kelvin Kabeti Omieno

mailto:komieno@kafuco.ac.ke

Automated Feature Extraction from UML Images to Measure SOA Size

1133

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B4131079220/2020©BEIESP

DOI:10.35940/ijrte.B4131.079220

 [11] introduced Img2UML tool to extract UML class

diagram from an image into an XML file for further

processing by StarUML case tool. The approach allows users

to upload UML images, detect rectangles that host class

names and attributes based on geometrical detection. The tool

also detects existence of relationships among classes and used

Microsoft Office Document Imaging (MODI) OCR to extract

class names and attribute names. They validated the tool‟s

accuracy and capability to handle large classes of UML

images. However, varied styles of representing UML

diagrams by various UML designers, offers a challenge to

tools that are not supported by machine learning techniques.

Furthermore, the tool was not able to identify types of

relationship among classes. Intwala et al. [2] proposed a

multi-level thresholding geometrical tool to read and interpret

CAD images. The tool allowed input of images which were

converted to grayscale and eventually to binary images based

on OTSU thresholding. They applied Black Top Hat

morphology and White Top Hat morphological operations, to

capture solid arrows and line based arrows respectively. The

tool made use of contour detection feature to capture enclosed

areas and they used area checks to detect arrows. They tested

the tool with different images which returned promising

results. However, geometrical morphological, contour and

area check detection are challenged when arrow shapes, style

and area vary from the training arrow. For example line based

arrows are drawn differently in terms of thickness, arrow head

shape and how they link to other objects in the diagram which

may result to image arrow failing the test of morphological

detection, contour and area checks. Problems of geometrical

counter and area based detection can be solved by introducing

machine learning techniques to take care of different types of

shapes, shades, area and colors. Machine learning techniques

use algorithms to learn and predict based on training sets [1]

[12]. Machine learning is applied in various areas including

image classification, text extraction, natural language and any

other process that requires prediction and detection. Image

classification is the process of extracting features from an

image while text extraction is the process of capturing and

recognizing text from an image [1][13]. In the past few years,

image processing has experienced tremendous progress as a

result of vast amount of digital image and development in

machine learning techniques [1]. Most common machine

learning techniques for image classification include Artificial

Neural Network (ANN), Decision Tree, Naïve Bayes [14]

[15], Support Vector Machine (SVM) [16] and Convolutional

Neural Network (CNN) [17]. So far, CNN is more efficient

and provides a better image classification platform as

compared to other machine learning techniques. One

advantage of CNN is reducing under-fitting and overfitting

which give better result. CNN is made up of learnable neurons

which are weighted accordingly, trained with various datasets

to extract and classify features from an image[1][12][18]. The

task of implementing machine learning is far much simpler

with the introduction of machine learning frameworks such as

TensorFlow released by Google in 2015 and Keras [19] [20].

TensorFlow and Keras are open source machine learning

libraries designed for faster and easier implementation with

various platforms including C++ and Python[19]. Text

extraction from images has also experienced tremendous

development in relation to techniques used to extract text and

the amount and variety of available images that require text

extraction. Text extraction technology has developed from

Optical Character Recognition (OCR) that could only extract

defined standard characters to currently where machine

learning driven OCR that enables extraction of various

shapes of characters including hand written [1][21][13].

Today, the most common text extraction implementation is

Tesseract-OCR which has an inbuilt deep neural network

technique called Long Short-Term Memory (LSTM) to

enhance text extraction process. Lastly, Natural Language

Processing (NLP) is another area that rely immensely on

machine learning to classify text [22]. Text classification is

the process of analyzing and categorizing text into defined

groups or classes. Classification of text is made more efficient

with inbuilt machine learning algorithms in implementation

languages such as Python. Machine Learning techniques for

NLP include Random Forrest and Support Vector Machine

(SVM). This study proposes an automated tool that relies on

existing deep learning techniques including ResNet50 CNN

to detect and classify images, EAST text detector, Tesseract

OCR and Multi-Class SVM to detect, recognize and classify

operations names respectively from UML interface diagrams.

The remaining part of this paper discusses the proposed

solution in detail, results and discusses the findings and

conclusion.

II. PROPOSED SOLUTION

This study proposes an automated tool to allow input of UML

interface diagram images and sequence diagram images. The

tool then uses CNN deep learning image classifier to detect

and classify UML arrows which are relevant to compute SOA

size. In addition, the automated tool provides a platform

based on Tesseract OCR to recognize text contained in UML

interface diagram. The tool then classified operations names

based on their complexity as stipulated in SOASM [3].

SOASM [3] proposed SOA size metrics grounded on UML

interface diagram and sequence diagram which formed the

basis of this study which is to automate the process of

computing SOA size by capturing UML features. SOASM [3]

proposed Service Dependency Count (SDC) and Weighted

Operation Count (WOC) extracted from UML service

interface diagram and Weighted Message Count (WMC)

extracted from UML sequence diagram. The summation of

the three metrics was used to compute SOA size. A sample of

UML service interface diagram for a Taxi management

system is as shown in Fig. 1.

Figure 1: Taxi Service UML interface diagram

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-9 Issue-2, July 2020

1134

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B4131079220/2020©BEIESP

DOI:10.35940/ijrte.B4131.079220

The task at hand for our proposed automated tool was to

extract and classify text representing operations from UML

interface diagram to compute WOC. Secondly, the tool was

required to classify types of arrows from UML interface

diagram and sequence diagram to compute SDC and WMC

respectively. Text extraction and image classification were

achieved with the support of existing deep learning

algorithms and image processing libraries in the

implementation language.

A. Text Extraction

Based on WOC SOA size estimation metrics, operation

names contained in the lower rectangle in UML interface

diagram shown in Fig. 1 formed the basis for computing

WOC. The tool was required to extract operation names in the

bottom rectangle, classify the names then assign weights to

operation names based on their complexity. We employed

deep leaning text detection technique to detect text, OCR to

extract detected text and natural language processing

algorithm to classify operation names.

1) Text detection

Text detection identifies and locates a group of characters

without spaces contained in an image. We employed a deep

learning technique known as Efficient and Accurate Scene

Text detection (EAST) [23] pipeline to detect text contained

in UML interface diagrams. EAST is faster, more accurate

and capable of localizing text of different shapes including

text affected by light and reflection as compared to other text

detection methods. EAST text detector makes use of Fully

Convolution Network (FCN) model to detect the presence of

text in an image. We implemented EAST pipeline in Python

supported by OpenCV library. We loaded the UML interface

image and EAST algorithm into the system. We formed two

layers for feature maps including a layer to give the

probability of a region containing text and the second layer to

represent the geometry of the image defining coordinates for

the text bounding box. The final result was highlighted

bounding boxes of text Region of Interest (ROI) contained in

UML interface diagram as shown in Fig. 2.

Figure 2: Detected text in UML interface

2) Text recognition

The next step was to recognize detected text ROI by

extracting text from images and store in an array. We used

Tesseract OCR to read images and text contained in the UML

interface diagram. The current version of Tesseract OCR is

fitted with Long Short term Memory (LSTM) deep learning

algorithm to improve on text recognition accuracy. The

process of text recognition was implemented in Python which

also provided image processing libraries to enable extracted

text to be loaded into as array for text classification. Tesseract

OCR captures both service names at the top rectangle and

operation names at the bottom rectangle from UML interface

diagram. However, to compute WOC, we only needed

operation names in our classification and computation.

Therefore, the tool separates operations names from service

names by use of python „IF‟ condition and wildcard

characters to consider only text with characters „()‟ at the end

to represent operation names. Fig. 3 shows a snapshot of a

section of text extracted by Tesseract-OCR from the sampled

UML interface diagram image sorted in ascending order.

Both EAST and Tesseract OCR are existing models and

therefore they did not require training.

Figure 3: A section of text recognized from UML

3) Text classification

Weighted Operation Count (WOC) defined in [3] classified

operations based operation complexity as simple, average and

complex. The next task of our proposed tool was to classify

operations automatically. The tool uses Multi-class Support

Vector Machine (SVM) implemented in Python to analyze

and classify text into simple, average and complex operations.

The process involved training text classification model,

evaluate and execute the model. We used “The Bag of words

model” to convert text to numbers for classification. We

collected a wide variety of possible operation names to train

the classification model. The text classification model was

designed based on training dataset of 1200 operation texts. In

this case the model was working with three finite classes. We

used 100 service operation names to test both the text

recognition model and text classification model.

4) WOC Computation

Through an implementation program counter, the tool is able

to compute the number of classified operations into simple,

average and complex categories. The number of operations in

each category is then multiplied by the assigned weights and

summed to give the total weighted operation count (WOC).

Operations that are not captured from UML interface diagram

by EAST detector and Tesseract OCR are not included in the

count. Therefore, further verification is required to ascertain

inclusion of all operations in the final count. Text extraction

from UML interfaces for the purpose of computing WOC

includes input image, text detection, and text recognition and

text classification as shown in

Fig. 4.

Automated Feature Extraction from UML Images to Measure SOA Size

1135

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B4131079220/2020©BEIESP

DOI:10.35940/ijrte.B4131.079220

Figure 4: Text extraction process

B. Image classifier

This study used existing ResNet50 CNN[12] to classify UML

interface and sequence diagrams images arrows. In UML

interface diagram, the type of arrow in Fig. 5 is determined by

the type of dependency among services. On the other hand,

the type of arrow in a sequence diagram is classified as

synchronous, asynchronous and reply message centered on

the type of data movement. The objective of ResNet50 CNN

in this study was to classify arrows types based on their arrow

head shape and dashed line.

Figure 5: Types of UML composition arrows

First of all, we prepared datasets consisting of 1000 UML

arrows for UML interface diagram and 1000 arrows for UML

sequence diagram. For both UML interface and UML

sequence diagrams we used 900 arrows to train each

ResNet50 CNN algorithm and 100 arrows to test each

ResNet50 CNN model. Selected arrows for training set and

validation were varied accordingly to capture different arrow

head shapes, dotted lines types, varied arrow head area and

shades. After preparing training datasets and test sets, we

supplied ResNet50 CNN with the training dataset, and then

we tested the model with test dataset. We used python and

openCV to implement ResNet50 which was supported by

Tensorflow and Keras. We constructed image pyramid and

sliding window in Python to identify and extract arrow

images. ROI captured was passed through CNN for

classification which returned positive results. UML interface

images loaded into the tool were exposed to CNN model

which extracted identified arrow types accordingly as shown

in Fig. 6.

Figure 6: Arrow classification based on dependency

To compute Service Dependency Count (SDC) metric as

defined in SOASM[3], we used a loop to count the number of

each type of arrow then multiplied with their respective

weights and summed to compute SDC. Lastly, we applied the

same principle of arrow detection to identify arrow types in

UML sequence diagram. Based on SOASM, data movement

among services represented in sequence diagram are

indicators of SOA size. We exposed UML sequence diagrams

to the trained ResNet50 CNN which detected data movement

arrows as shown in UML sequence diagram in Fig. 7

indicated by letters a, s and r representing asynchronous,

synchronous and reply messages respectively.

Figure 7: UML sequence diagram arrow classification

Having identified data movement arrows as represented in

sequence diagram, the tool is able to compute WMC by

counting the number of each arrow type, multiply with the

assigned weight for each type then sum the result to calculate

total WMC. Lastly, the summation of SDC, WOC and WMC

is computed to produce the final result which is SOA size.

III. RESULTS AND DISCUSSION

The success of implementing our proposed tool was

determined by the level of accuracy in detecting, extracting

and classifying text and arrow types captured from UML

interface diagram images and sequence diagram images. First

of all, we tested the accuracy of extracting text which involves

the process of text recognition. Accuracy was tested against

the number of operations contained in a UML diagram as

shown in Fig. 8.

Atomic
Lighter

Aggregation

Strong

Composition

Input image

Text detection

Text recognition

Text classification

Compute WOC

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-9 Issue-2, July 2020

1136

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B4131079220/2020©BEIESP

DOI:10.35940/ijrte.B4131.079220

Figure 8: Text recognition accuracy

Text extraction accuracy was affected in instances where

spaces appeared within a word causing the text to be

recognized as two different words or operations. Another

aspect that affected text recognition is images with unclear

text appearance. Secondly, operation names classification

was tested for accuracy based on correct classification of

operation names as simple, average and complex. According

to SOASM [3] WOC metric, simple operations include

operations with simple algorithm such as add, compute,

delete, admit, book and so on. On the other hand average

operations include algorithms to sort, search and so on while

complex operations are intelligence based operations such as

forecasting and predictions algorithms. One main challenge

of classifying this type of text is lack of standard for naming

operations which sometimes the operation name does not

necessarily reflect the underlying algorithm. Lack of standard

and consistency in naming operations affected the model‟s

accuracy as shown in Fig. 9.

Figure 9: Text classification accuracy

Thirdly, accuracy of classifying arrows in UML interface and

sequence diagram was validated. We used different types of

arrows as training data to enable the automated tool capture a

wide range of arrow types. This included varying arrow head

shape and area, use of straight line, curved lines and cornered

lines, different types of dashed lines and arrow line shades.

The result of validation is as shown in Fig. 10

Figure 10: Arrow classification accuracy

Results from analysis show that the tool is accurate and

applicable. A summary of our validation results are shown in

Table 1.
TABLE- I: MODELS VALIDATION RESULTS

Models Training

dataset

Testin

g

dataset

Average

accuracy

EAST detector - 100 96.4%

Tesseract OCR - 100 95.8%

Multi-class SVM 1200 100 93.1%

ResNet50 CNN (UML Interface) 900 100 97 %

ResNet50 CNN (UML sequence) 900 100 97.4%

Most instances where the tool was not able to capture text or

arrow correctly were due to issues with input image or text.

When standard UML diagram and notations were used, the

tool recognized and classified text and arrows more accuracy.

IV. CONCLUSION

In this study we proposed an automated tool supported by

deep learning techniques to detect and classify service

operations and arrows extracted from UML interface diagram

and UML sequence diagram. We used EAST deep learning

algorithm to detect text, Tesseract OCR with Long

Short-Term Memory (LSTM) to recognize text and

Multi-Class SVM to classify service interface operations into

simple, average and complex. In addition, we classified UML

interface and sequence diagram arrows using ResNet50 CNN.

We tested the automated tool accuracy with regard to text

extraction and image classification and the results were

encouraging. The result from this study implies that automatic

extraction of text and arrow images from UML diagram

images offers a more accurate method of reading and

interpreting UML images. Future research is required to

automate more design artifacts with are available electronic

format.

REFERENCES

1. R. Deepa and K. N. Lalwani, “Image Classification and Text

Extraction using Machine Learning,” Proc. 3rd Int. Conf. Electron.

Commun. Aerosp. Technol. ICECA 2019, pp. 680–684, 2019, doi:

10.1109/ICECA.2019.8821936.

2. A. M. Intwala, K. Kharade, R. Chaugule, and A. Magikar,

“Dimensional arrow detection from CAD drawings,” Indian J. Sci.

Technol., vol. 9, no. 21, pp. 1–7, 2016, doi:

10.17485/ijst/2016/v9i21/89259.

3. W. S. Munialo, M. G. Muketha, and K. . Omieno, “Size Metrics for

Service-Oriented Architecture,” Int. J. Softw. Eng. Appl., vol. 10, no.

2, pp. 67–83, 2019.

4. M. Harizi, “The Role of Class Diagram in Estimating Software Size,”

Int. J. of Comp. Appl.,vol. 44, no. 5, pp. 31–33, 2012.

5. L. Marcos, “Modelling of Service-Oriented Architectures with UML,”

vol. 194, pp. 23–37, 2008, doi: 10.1016/j.entcs.2008.03.097.

6. G. Albrecht, A., Gaffney, “No Title,” A Softw. Sci. Validation, IEEE

Trans Softw. Eng., 1983.

7. H. Chindove, L. F. Seymour, and F. I. Van Der Merwe,

“Service-oriented Architecture : Describing Benefits from an

Organisational and Enterprise Architecture Perspective,” vol. 3, no.

Iceis, pp. 483–492, 2017, doi: 10.5220/0006383604830492.

Automated Feature Extraction from UML Images to Measure SOA Size

1137

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B4131079220/2020©BEIESP

DOI:10.35940/ijrte.B4131.079220

8. S. Bilgaiyan, S. Sagnika, S. Mishra, and M. Das, “A systematic review

on software cost estimation in Agile Software Development,” Journal

of Engineering Science and Technology Review, vol. 10, no. 4. pp.

51–64, 2017, doi: 10.25103/jestr.104.08.

9. Z. A. Siddiqui and K. Tyagi, “A critical review on effort estimation

techniques for service-oriented-architecture-based applications,” Int.

J. Comput. Appl., vol. 7074, no. October, pp. 1–10, 2016, doi:

10.1080/1206212X.2016.1237132.

10. COSMIC, Guideline for Sizing SOA Software. 2015.

11. B. Karasneh and M. R. V Chaudron, “Extracting UML Models from

Images,” no. March, 2013, doi: 10.1109/CSIT.2013.6588776.

12. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern

Recognit., vol. 2016, pp. 770–778, 2016, doi:

10.1109/CVPR.2016.90.

13. T. Kumuda and L. Basavaraj, “Edge based segmentation approach to

extract text from scene images,” Proc. - 7th IEEE Int. Adv. Comput.

Conf. IACC 2017, pp. 706–710, 2017, doi: 10.1109/IACC.2017.0147.

14. P. Dong-Chul, “Image Classification Using Naive Bayes Classfier,”

Int. J. Comput. Sci. Electron. Eng., vol. 4, no. 3, pp. 2320–4028, 2016,

http://www.isaet.org/images/extraimages/P1216004.pdf.

15. S. C. Hsu, I. C. Chen, and C. L. Huang, “Image classification using

naive bayes classifier with pairwise local observations,” J. Inf. Sci.

Eng., vol. 33, no. 5, pp. 1177–1193, 2017, doi:

10.6688/JISE.2017.33.5.5.

16. L. H. Thai, T. S. Hai, and N. T. Thuy, “Image Classification using

Support Vector Machine and Artificial Neural Network,” Int. J. Inf.

Technol. Comput. Sci., vol. 4, no. 5, pp. 32–38, 2012, doi:

10.5815/ijitcs.2012.05.05.

17. F. Sultana, A. Sufian, and P. Dutta, “Advancements in image

classification using convolutional neural network,” Proc. - 2018 4th

IEEE Int. Conf. Res. Comput. Intell. Commun. Networks, ICRCICN

2018, pp. 122–129, 2018, doi: 10.1109/ICRCICN.2018.8718718.

18. Z. Wu, C. Shen, and A. van den Hengel, “Wider or Deeper: Revisiting

the ResNet Model for Visual Recognition,” Pattern Recognit., vol. 90,

pp. 119–133, 2019, doi: 10.1016/j.patcog.2019.01.006.

19. [19] K. R. Tripathi and R. Kumar, “Image Classification using small

convolutional Neural Network,” IEEE, pp. 483–487, 2019, doi:

978-1-5386-5933-5/19.

20. K. Chauhan and S. Ram, “Image Classification with Deep Learning

and Comparison between Different Convolutional Neural Network

Structures using Tensorflow and Keras,” Int. J. Adv. Eng. Res. Dev.,

2018.

21. C. Patel, A. Patel, and D. Patel, “Optical Character Recognition by

Open source OCR Tool Tesseract: A Case Study,” Int. J. Comput.

Appl., vol. 55, no. 10, pp. 50–56, 2012, doi: 10.5120/8794-2784.

22. K. Kowsari, D. E. Brown, M. Heidarysafa, K. J. Meimandi, M. S.

Gerber, and L. E. Barnes, “HDLTex : Hierarchical Deep Learning for

Text , Classification,”, IEEE, 2017, doi:

10.1109/ICMLA.2017.0-134.

23. X. Zhou et al., “EAST : An Efficient and Accurate Scene Text

Detector,” IEEE, pp. 5551–5560, 2015.

AUTHORS PROFILE

Samson Wanjala Munialo is an assistant

lecturer in Meru University of Science and

Technology, Kenya. He has BED. Degree from

Catholic University of Eastern Africa, Kenya, MSc

Information Technology Management from

University of Sunderland, UK and currently he is

pursuing his PHD Information Technology at

Masinde Muliro University of Science and

Technology. His area of research includes software metrics, Machine

Learning, software effort estimation and IT project management.

Geoffrey Muchiri Muketha received the BSc degree

in Information Science from Moi University in 1995,

the MSc degree in Computer Science from Periyar

University in 2004, and the PhD degree in Software

Engineering from Universiti Putra Malaysia in 2011.

He is Associate Professor and Dean of the School of

Computing and Information Technology at Murang‟a

University of Technology, where he has taught and

supervised both undergraduate and postgraduate students for many years.

His research interests include software and business process metrics,

software quality, verification and validation, empirical methods in software

engineering, and component-based software engineering. He is a member of

the International Association of Engineers (IAENG).

Kelvin Omieno is a Senior Lecturer in the

Department of Information Technology and

Informatics, School of Computing and Information

Technology, Kaimosi Friends University College,

Kenya. He holds a PhD in Information Systems of

Jaramogi University of Science and Technology,

MSc in Information Technology and BSc in

Computer Science. His research interests are in ICT4D, eLearning, Internet

of Things, Software metrics and Health Informatics. He is a professional

member of Association of Computing Machinery (ACM).

