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Abstract—The profit based unit commitment (PBUC) problem
determines an optimal unit commitment schedule for a generation
company (GENCO) participating in a deregulated environment
with the aim of maximizing its profit. This is done using predicted
prices of energy and other ancillary services including supply
of reserve power. Several techniques have been proposed in
literature to solve the optimization problem and this paper
applies the evolutionary particle swarm optimization (EPSO)
algorithm. Simulation results carried out in MATLAB software
for a test GENCO with 10 thermal units shows that the EPSO
algorithm provides better solutions and has better convergence
characteristics than the classic PSO algorithm.

I. INTRODUCTION

Over the last few decades the electric energy sub-sector
has been undergoing significant changes. Probably the biggest
change has been deregulation of many power systems espe-
cially in the developed world; though aspects of deregulation
are also beginning to take root in developing nations. The main
aim of deregulation is to create competition among Generation
Companies (GENCOs) and hence provide different choices of
generation options at lower prices to consumers [1], [2].

Unit Commitment has always been a significant task in
power systems. However, the approach in the deregulated
environment is significantly different form that in the regulated
environment. Here, the GENCO is not the system operator
hence, unlike the regulated market where the objective of the
utility in unit commitment is the minimization of operating
cost, in the deregulated environment the objective of the
GENCO is the maximization of profit. This has led to what is
now referred to as Profit Based Unit Commitment (PBUC)
in deregulated markets [3]–[5]. From the GENCO’s point
of view, an optimal solution to the PBUC problem is very
important because of the potential economic consequences.
Reducing the fuel cost by as little as 0.5 percent can result
in savings of millions of dollars per year for large GENCOs
which would translate to significant gains in profit [3].

Various solution methodologies for solving the PBUC prob-
lem have been proposed in literature [6]–[9]. This paper
proposes a solution methodology incorporating reserve pay-
ments as well as spot market energy prices. The proposed
methodology is based on the EPSO technique [10]. The
Lagrangian relaxation technique is used to simplify the PBUC
problem and the EPSO algorithm plays the significant role of
updating the Lagrange multipliers. The obtained optimal UC

schedule satisfies all operational constraints including meeting
bilaterally agreed energy supply commitments.

EPSO is preferred to the classic PSO algorithm because of
its better performance. With classic PSO there is a challenge
in the choice of the weight parameters at the beginning of
the solution algorithm. However, the mutation and selection
processes of the EPSO algorithm provides an aspect of pa-
rameter tuning resulting in better solutions and convergence
characteristics [10] which is confirmed by the simulation
results in this paper.

The rest of this paper is organized as follows: section
II introduces the EPSO algorithm; section III outlines the
PBUC problem formulation; section IV explains the proposed
solution methodology; section V presents simulation results
on a test IEEE system; while conclusions are given in section
VI.

II. EVOLUTIONARY PARTICLE SWARM OPTIMIZATION

Evolutionary particle swarm optimization (EPSO) is an
optimization algorithm based on a combination of the evo-
lutionary programming (EP) and particle swarm optimization
(PSO) concepts [10]. In simple terms, a population (swarm)
of processing elements called particles, each of which repre-
senting a candidate solution forms the basis of computation
in the EPSO algorithm. A possible solution to the existing
optimization problem is represented by each particle in the
swarm. A population of random solutions is used to initialize
the EPSO algorithm and the optimal solution is searched by
updating the solutions in each iteration.

Similar to the classic PSO algorithm, during an EPSO
iteration, every particle moves towards its own personal best
solution that it achieved so far (pBest), as well as towards
the global best (gBest) solution which is best among the best
solutions achieved so far by all particles present in the pop-
ulation. The EPSO algorithm works to handle the parameter
tuning challenge of the classic PSO algorithm by progressively
“mutating” the weight parameters with successive iterations.
The basic structure of EPSO as originally explained in [10]
carries out the following processes at each iteration:

• REPLICATION - each particle is replicated a number of
times.

• MUTATION - each particle has its weights mutated.



• REPRODUCTION - each mutated particle generates an
offspring according to the particle movement rule.

• EVALUATION - each offspring has its fitness evaluated.
• SELECTION - the best particles between the original

set and the mutated set survive based on a stochastic
tournament to form a new generation.

Usually, after a certain pre-set number of iterations (gener-
ations), the particle with the global best solution is stored as
the optimal solution. Incorporation of the Darwinistic charac-
teristics of mutation and selection allows the EPSO algorithm
to take advantage of the faster convergence characteristics of
Evolutionary Programming (EP) strategies.

III. PBUC PROBLEM FORMULATION

The PBUC problem is formulated as a maximization of
a GENCO’s profit. Mathematically, we seek to determine a
GENCO’s optimal unit commitment schedule i.e. generation
units turn ON - turn OFF and power output schedule based
on predicted energy and reserve prices. In this paper, the
GENCO’s bilateral contract commitments are also considered.
The objective function and the operational constraints are
explained in the following subsections. The variables used in
the equations are listed in Table I.

A. Objective Function

Profit (PF ) is defined as the difference between revenue
(RV ) obtained from sale of energy and reserveand the total
operating cost (TC) of the GENCO. Mathematically, the
PBUC problem objective function is given as:

Maximize PF = RV − TC (1)

1) GENCO Revenue: In (1), RV is given by:

RV =

H∑
h=1

(
RV ph +RV rh

)
(2)

Revenue from the energy market at a given hour RV ph is
calculated as:

RV ph = αhbP
h
b +αhs

(
N∑
i=1

Phi − Phb

)
+κ
(
αhs − αhb

)
Phb (3)

The first term in (3) represents revenue from bilateral con-
tracts, the second term represents revenue from the energy sold
at the spot market, while the third term represents revenue
from contracts of differences. Contracts of differences are
usually included in bilateral contracts to compensate suppliers
and consumers for differences between the bilaterally agreed
prices and the prevailing market price [11].

Revenue from sale of reserve power at hour h is given by:

RV rh = αhr

N∑
i=1

(
Pmaxi − Phi

)
(4)

In (4), it is assumed that both spinning and standing reserve are
paid at the same rate. If the pricing is different, the equation
could be split to have two terms accounting for each type of
reserve.

TABLE I
NOMENCLATURE

h hour index
i generator index
j EPSO particle index
k iteration number index
r EPSO replicated particle index
H number of scheduling hours
J number of EPSO particles
K maximum number of EPSO algorithm generations
N total number of generators
R number of replications for an EPSO particle
PF GENCO Profit
RV, TC GENCO revenue and costs respectively
RV ph revenue from energy (MWh) sales at hour h
RV rh revenue from reserve capacity (MW) sales at hour h
FChi fuel cost of generator i at hour h
SChi start up cost of generator i at hour h
ai, bi, ci fuel cost curve constants for generator i
CSCi cold start-up cost of generator i
HSCi hot start-up cost of generator i
CShri Number of hours after which generator i is considered cold
αhs unit price for spot market energy sales at hour h
αhb unit price for bilateral contracts energy sales at hour h
αhr unit price for reserve capacity sales at hour h
κ factor for contract of differences
Phb scheduled power generation for bilateral contracts at hour h
Phi power output from generator i at hour h
Uhi state of generator i at hour h
Pmini , Pmaxi minimum and maximum outputs of generator i respectively
RUi, RDi ramp up and ramp down limits of generator i respectively
MUTi,MDTi minimum up time and minimum down time limits of

generator i respectively
λh,rj,k Lagrange Multiplier for the rth replica of particle j

hour h and iteration k
vh,rj,k velocity of the rth replica of particle j for hour h and

iteration k
w0,r
j,k , w

1,r
j,k , w

2,r
j,k weighting factors corresponding to the rth replica of

particle j at iteration k
pBestj,k personal best solution of particle j at iteration k
gBestk global best solution for all particles at iteration k
τλ standard deviation of the random initial value of

Lagrange multipliers
τg standard deviation of the random disturbance of the

value of gBest
τw standard deviation of the random mutation of a weight

parameter
pluck probability of the best offspring of a particle surviving

after an iteration

2) GENCO Costs: In (1), the total costs TC is a sum of
fuel costs(FC) and start up costs(SC) for all generators over
the entire scheduling period given as:

TC =

H∑
h=1

N∑
i=1

(
FChi + SChi

)
(5)



where
FChi = ai + biP

h
i + ci

(
Phi
)2

(6)

SChi = γi
(
1− Uh−1

i

)
Uhi (7)

where

γi =

{
CSCi if

∑h
t=h−CShri U

t
i ≥ CShri

HSCi if
∑h
t=h−CShri U

t
i < CShri

(8)

B. Operational Constraints

The GENCO operational constraints are given as:
(a) Power balance for bilateral contracts

N∑
i=1

Phi ≥ Phb ∀h (9)

(b) Generation limit constraints

Uhi P
min
i ≤ Uhi Phi ≤ Uhi Pmaxi ∀i,∀h (10)

(c) Generator ramp up constraints

Phi − Ph−1
i ≤ RUi ∀i, ∀h (11)

(d) Generator ramp down constraints

Ph−1
i − Phi ≤ RDi ∀i, ∀h (12)

(e) Generator minimum up time constraints

Uhi = 1 if U ti − U t−1
i = 1,

for h = t, ..., t+MUTi − 1 (13)

(f) Generator minimum down time constraints

Uhi = 0 if U t−1
i − U ti = 1,

for h = t, ..., t+MDTi − 1 (14)

Constraints (10)−(14) are similar to the traditional UC
formulation [4]. However, constraint (9) dictates that the
GENCO’s total generation must be greater than its bilateral
contracts commitments. This is in contrast with the traditional
case where generation must equal total system demand and
losses. Also, unlike the traditional UC formulation, there is
no spinning reserve constraint as this is not the GENCO’s
responsibility. The GENCO only gets payments for supplying
part of the reserve.

IV. PBUC SOLUTION METHODOLOGY

The proposed solution methodology involves the solution
of a relaxed form (Lagrangian) of the PBUC problem. The
Lagrangian function is formed by relaxing constraint (9)
into the objective function. Possible solutions to the relaxed
problem are then initialized and the solutions are iteratively
updated using a two-step process.

The first step involves solving the relaxed problem for
each possible solution (sets of Lagrange multipliers). With the
relaxation, optimal schedules of individual generation units
are determined by breaking down the relaxed function into
subproblems for each unit. A 2-state dynamic programming

code is implemented to find an optimal UC schedule for each
unit given a set of Lagrange multipliers. The second step
involves updating of the possible solutions (particles) using
the EPSO algorithm.

The subsequent subsections outline: (A) formation of the
Lagrangian function; (B) initialization of possible solutions;
(C) solution of the relaxed problem and (D) updating of
Lagrange multipliers using EPSO.

A. Formation of Lagrangian Function

Constraint (9) – the power balance for bilateral contracts – is
a unit coupling constraint meaning that a decision taken on one
generator will affect decisions taken for the other generators.
This makes it a difficult constraint to handle and it is therefore
chosen to be relaxed using a set of Lagrange multipliers.
Constraints (10) to (14) are not coupling constraints as they
affect individual units independently.

A Lagrangian function L is formed as:

L = RV − TC −
H∑
h=1

λh

(
Phb −

N∑
i=1

Phi

)
(15)

The relaxed PBUC problem is then the maximization of L
subject to constraints (10) to (14). For a given set of Lagrange
multipliers: Λ =

{
λ1, λ2, . . . , λH

}
, it is possible to determine

a UC schedule that maximizes the Lagrangian function. The
Lagrange multiplier set – and its corresponding UC schedule
– that maximizes the Lagrangian function while meeting all
operational constraints is then the optimal solution to the
PBUC problem.

To maximize L with respect to Phi in (15):

∂L
∂Phi

∣∣∣∣∣
Ph∗

i

=
(
αhs − αhr

)
−
(
bi + 2ciP

h∗
i

)
+ λh = 0 (16)

or

λh =
(
bi + 2ciP

h∗
i

)
− (αhs − αhr ) (17)

The term bi + 2ciP
h∗
i in (17) is the unit marginal cost when

generating Ph∗i MW. Hence, (17) states that, at the optimal
generation level, the value of the Lagrange multiplier equals
the difference between the marginal cost and the difference
between the energy price and reserve price. This conclusion
is used in section IV-B to determine a suitable initial values
of the Lagrange multipliers.

Making Ph∗i the subject of the formula in (17):

Ph∗i =
αhs − αhr + λh − bi

2ci
(18)

Ph∗i is the optimal output of unit i at hour h corresponding to
Lagrange multiplier λh before considering the unit generation
limits, minimum up time, minimum down time and ramp rate
constraints. This conclusion is used in section IV-C in the
procedure for solving the relaxed PBUC problem.



B. Initialization of Lagrange Multipliers

The solution space of the PBUC problem is large. For
example, if the scheduling period is 24 hours, the solution will
have 24 Lagrange multipliers hence the solution is defined in
a 24-dimensional space. For such a large solution space, the
chances of finding a good solution is reduced if the initial
solution is not carefully chosen.

An initial “rough” solution is determined by solving the
relaxed PBUC problem while disregarding the unit minimum
up time, minimum down time and ramp rate constraints using
the GENCO marginal cost curve as follows:

• For each hour, determine the marginal cost corresponding
to the bilateral power commitment MC(Phb ) from the
marginal cost curve.

• From (17), the initial value of the Lagrangian multiplier
at hour h: λh,0 is given by:

λh,0 = MC(Phb )−
(
αhs − αhr

)
(19)

The Lagrange multipliers set: Λ0 =
{
λ1,0, λ2,0, . . . , λH,0

}
is

used as an initial solution to the PBUC problem.
The EPSO algorithm is initialized using random possible

solutions (particles). Since the optimal solution when all
constraints are considered will be close to Λh,0, the initial
value of a Lagrange multiplier corresponding to particle k for
hour h is given by:

λhk = max
{

0, λh,0 + τλN(0, 1)
}

(20)

where N(0, 1) is a normally distributed random number with
a mean of zero and variance of 1.

C. Solution of Relaxed Problem

The following procedure is used to solve the relaxed
PBUC problem for a set of Lagrange multipliers: Λ =
{λ1, λ2, . . . , λH}.

Step 1: Get the price data for both the energy and reserve
markets and values of Lagrange multipliers for each schedul-
ing hour.
Step 2: set i = 1.
Step 3: Get the input data for unit i: Pmaxi , Pmini etc.
Step 4: Set h = 1.
Step 5: Calculate Ph∗i from (18).
Step 6: Check and correct for generator limit constraints:
if Ph∗i > Pmaxi , set Ph∗i = Pmaxi

if Ph∗i < Pmini , set Ph∗i = Pmini

Step 7: Check and correct for unit ramp up and ramp down
constraints:
if Ph∗i > Ph−1

i +RUi, set Ph∗i = Ph−1
i +RUi

if Ph∗i < Ph−1
i −RDi, set Ph∗i = Ph−1

i −RDi

Step 8: Compute the unit profits corresponding to various
state transitions considering the minimum up time and min-
imum down time constraints and pick the optimal (more
profitable) options.
Step 9: set h = h+ 1. If all hours have been covered, go to
Step 10 else, go back to Step 5.

Step 10: Pick the option that results in higher profits and
return the corresponding UC schedule as optimal solution.
Step 11: set i = i + 1. If all generators have been covered,
go to Step 12 else, go back to Step 3.
Step 12: Return the optimal UC schedule.

D. Lagrange Multipliers Update Using Evolutionary Particle
Swarm Optimization

The EPSO algorithm is used to update the Lagrange Multi-
pliers to determine the set that provides the best results. In the
solution of the PBUC problem, a particle represents a candi-
date solution to the problem i.e. a set of Lagrange Multipliers
with one Lagrange multiplier for each hour of the scheduling
horizon. Given a scheduling period of H hours, the jth particle
after k iterations Λj,k = {λ1j,k, λ2j,k, λ3j,k, . . . , λHj,k} represents
a position in the H-dimension solution space. The particle also
has an associated velocity Vj,k = {v1j,k, v2j,k, v3j,k, . . . , vHj,k}
which represents a direction in which the particle is moving
in the solution space. The particle also has an associated
set of weights Wj,k = {w0

j,k, w
1
j,k, w

2
j,k} which govern the

direction of particle movement. w0
j,k governs the particle’s

inertia habit, w1
j,k governs its memory habit, while w2

j,k

governs its cooperation habit [10].
The following procedure is used to solve the PBUC problem

while updating particles (candidate solutions) using the EPSO
algorithm:

Step 1: Initialization:
Initialize J particles Λj,0 j = 1, 2, . . . , J . Each particle
is a set of H Lagrange multipliers whereby the Lagrange
multiplier corresponding to the jth particle and hour h is
obtained from (20). Store each initialized particle as pBestj ;
the fitness of each initialized particle as the best fitness value
for the corresponding particle; and the fittest particle of all
initialized particles as initial gBest.
Step 2: set k = 1.
Step 3: Replication
Each particle is replicated R times i.e. R new particles are
created as:

Λrj,k = Λj,k r = 1, 2, . . . R (21)

Step 4: Mutation
Each particle has its weights mutated as:

wl,rj,k+1 = wl,0j,k + τw,lN(0, 1) l = 0, 1, 2; r = 1, 2, . . . R
(22)

Step 5: Reproduction
Each particle and its replicas generate an offspring according
to the particle movement rule1.

Λrj,k+1 = Λrj,k + V rj,k+1 r = 0, 1, 2, . . . R (23)

where

V rj,k+1 = w0,r
j,k · V

r
j,k+1 + w1,r

j,k ·
(
pBestj,k − Λrj,k

)
+ w2,r

j,k ·
(
gBest∗k − Λrj,k

)
(24)

1Λ0
j,k refers to the original particle while Λ1

j,k , Λ2
j,k, . . . refer to the replica

particles



In (24), the gBestk value is disturbed to give gBest∗k using:

gBest∗k = gBestk + τgN(0, 1) (25)

Step 6: Evaluation
For each offspring, an optimal UC schedule is obtained
by solving the relaxed PBUC problem as described by the
procedure in section IV-C. The obtained UC schedule is used
to calculate the offspring’s fitness.
Step 7: Updating pBest and gBest
The fitness value of each offspring is used to update the
pBestj,k and gBestk values.
Step 8: Selection
For each set of offspring, one is chosen to survive to the next
generation through a stochastic tournament. The stochastic
tournament is carried out as follows:
• The best particle between the offspring of each particle is

determined.
• This particle survives to the next generation with a prob-

ability pluck while the other particles survive with a
probability (1− pluck) /r.

• If pluck is set to 100% then the best particle will always
be chosen (pure elitism selection) while if pluck is set to
0%, there will pure random selection.

Step 9: Convergence test
k = k + 1. If k = K go to Step 10. Else go to Step 3.
Step 10: Store gBestK and its corresponding UC schedule
as the optimal solution and STOP.

V. SIMULATION RESULTS

A. Test System

The proposed methodology is implemented in MATLAB
and tested for a GENCO with 10 thermal units whose data is
shown in Table II. The data is adapted from the IEEE 118-bus
test system which has 54 thermal units. Other unit data such
as ramp rate limits and minimum up and down times can be
found from http://motor.ece.iit.edu/data/ PBUCData.pdf. The
total installed capacity for the GENCO is 830 MW, about
10% of the system installed capacity of 8270 MW. In this
case, because of the size of the GENCO it can be assumed to
be a price taker (negligible market power) and hence it can be
assumed that there is no relationship between its power output
and the electricity market price.
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Fig. 1. GENCO Marginal cost curve

TABLE II
GENERATING UNITS DATA

Unit No. Pmini Pmaxi P 0
i a b c

[MW] [MW] [MW] [$] [$/MW] [$/MW2]
1 8 20 0 35.90 75.39 0.05660
2 8 20 0 35.90 75.39 0.05660
3 5 30 0 63.34 52.49 0.13932
4 5 30 0 63.34 52.49 0.13932
5 20 50 0 117.62 45.88 0.01954
6 25 50 0 117.62 45.88 0.01954
7 30 80 40 148.66 30.94 0.09184
8 25 100 100 20.30 35.64 0.02560
9 50 200 100 78.00 26.58 0.00880

10 50 250 250 56.00 24.66 0.00480

TABLE III
ENERGY AND RESERVE PRICE DATA

Hour Energy Reserve Hour Energy Reserve
Price Price Price Price

[$/MWh] [$/MWh] [$/MWh] [$/MWh]
1 29.23 2.00 13 57.01 2.77
2 26.40 1.70 14 54.42 2.87
3 22.47 1.27 15 63.12 2.92
4 21.07 1.12 16 65.59 3.32
5 23.16 1.35 17 67.24 3.23
6 30.86 2.18 18 63.87 2.97
7 31.56 2.17 19 55.61 2.96
8 47.39 2.34 20 52.55 2.73
9 49.70 2.51 21 47.55 2.35
10 52.10 2.69 22 39.69 1.76
11 55.35 2.94 23 37.00 1.57
12 55.50 2.95 24 30.51 1.16

TABLE IV
BILATERAL MARKET DATA

Hour Bilateral Bilateral Hour Bilateral Bilateral
Load Price Load Price
[MW] [$/MWh] [MW] [$/MWh]

1 397 32.09 13 422 32.57
2 387 31.89 14 412 32.37
3 371 31.58 15 417 32.47
4 360 31.37 16 422 32.57
5 347 31.12 17 435 32.82
6 380 31.75 18 445 33.21
7 397 32.08 19 457 39.91
8 417 32.47 20 467 40.10
9 427 32.66 21 472 40.19

10 442 33.08 22 447 33.30
11 445 33.21 23 440 33.00
12 432 32.76 24 427 32.66

Fig. 1 shows the GENCO’s marginal cost curve obtained
from the unit characteristics of Table II. The marginal cost
curve is used to determine the initial values of the Lagrange
multipliers as explained in Section IV-B. The hourly price of
energy and reserve is shown in Table III. It is assumed that re-
serve price is the same for both standing and spinning reserve.
The hourly bilateral market commitment and price is shown



TABLE V
COMPARISON OF SOLUTION QUALITY OBTAINED BY PSO AND EPSO

Algorithm Best Solution Average Solution Worst Solution
PSO $178, 069 $177, 591 $172, 685

EPSO $178, 911 $178, 317 $177, 408

in Table IV. The hourly bilateral market price is assumed to
be 10% higher than the marginal cost corresponding to the
bilaterally committed load as can be read from Fig.1.

B. Comparison of Solution Quality

The PBUC problem was solved using EPSO for the GENCO
described in Section V-A. For the purpose of solution quality
and convergence characteristics comparison, an equivalent
methodology based on the classic PSO algorithm [12] was also
tested. Both algorithms were run thirty times. In each case,
the initial weights were randomly generated from uniform
distributions. w0

j was drawn from the range [0 1], while both
w1
j and w2

j were drawn from the range [0 2]. In each trial
the same values of the weights were used for both the EPSO
and PSO algorithms. The other EPSO parameters are set as:
J = 20, K = 500, R = 1, pluck = 0.8, τλ = 1, τw = 0.5,
and τg = 0.05. For both algorithms, the best solution, average
solution, and worst solutions were determined and are reported
in Table V. It is clearly seen that the proposed EPSO algorithm
produces better solutions than the classic PSO algorithm in
terms of the final value of the GENCO profit.

The GENCO’s total committed generation from the best run
of the EPSO and PSO algorithms are shown in Fig. 2. The
slight differences in the two curves result in the differences in
the values of profit shown in Table V.

C. Comparison of Convergence Characteristics

The convergence characteristics of the average value of the
objective function at each iteration is shown in Fig. 3 It is
seen that the proposed EPSO algorithm converges faster and
generally to a higher value of profit than the PSO algorithm.
On average, it takes about less than 6 iterations for the EPSO
algorithm to reach the average final objective function value
reached by the PSO algorithm. The better performance of the
EPSO algorithm confirmed by Table V and Fig. 3 is due to the
inherent parameter tuning characteristic due to the mutation
step of the algorithm.

VI. CONCLUSION

A solution methodology based on the Evolutionary particle
swarm optimization technique is proposed to solve the profit
based unit commitment problem for GENCOs in deregu-
lated markets. The problem has been formulated including
a constraint setting the minimum GENCO output at a given
hour as the bilaterally committed generation for the hour. An
implementation for a GENCO with 10 thermal units shows
that the proposed methodology has a better performance than
the classic PSO algorithm both in terms of solution quality
and convergence characteristics.
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PSO algorithms
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