
Dr. Bultitia Godrick Mathews
Registrar, Department of Human Resource Administration, Finance, Planning & Development,
School of Business & Economics, Murang’a University of Technology, Kenya

Dr. Jairus Boston Amayi
Senior Lecturer, Department of Accounting & Finance,
School of Business & Economics, Murang’a University of Technology, Kenya

Abstract:
Manufacturing sector is important to the Kenyan economy, employing 13% of total workforce in the formal sector and 1.4 million people in the informal sector. Despite the importance, its contribution to the regional market is low at 7% export and GDP remains stagnant at 10% since 1960s. This has raised the concerns about Kenyan manufacturing sector’s performance in relation to firm efficiency. Previous studies in Kenya have focused on strategic human resource management practices and firm performance. While the HRM practices - firm efficiency relationship may enhance improved productivity, no research has been undertaken in consumer goods manufacturing firms in Kenya. The objective was to establish the relationship between human resource management practices and firm efficiency of consumer goods manufacturing firms in Kenya. Drawing from Resource Based theory, it was conceptualized that the independent and dependent variables are HRM practices and firm efficiency respectively. A cross sectional survey design and population of 65 firms were used. It was a census study with response at 76.9%. The results revealed that there is significant association between HRM practices and firm efficiency with most significant association being on material incentives and firm efficiency with R2 of 66.9% (β=.303, p<0.01), indicating that material incentives account for 30.3% of variance in efficiency. Conclusions are that among the firms, HRM practices predict firm efficiency. It is recommended that the firms’ efforts should be directed on HRM practices in order to enhance firm efficiency. Contrary to prior research, this study has revealed that HRM practices, affect firm efficiency.

Keywords: Human resource management practices, and firm efficiency, medium and large manufacturing firms, core activities - production and marketing of edible oils, soaps and detergents, beverages or sugar, Kenya, Dr. Bultitia

1. Introduction

1.1. Background of the Study

Human Resource Management (HRM) practices are activities undertaken by an organization in managing pool of human resource that will in turn give organization competitive edge. This definition concurs with Schuler & Jackson (1987), who defines HRM practices as, the organizational activities directed at managing the pool of human resource and ensuring that the resources are employed towards the fulfillment of organizational goals. Appelbaum (2001), too defines HRM practices as, the management of people within the internal environment of organizations, comprises the activities, policies, and practices involved in planning, obtaining, developing, utilizing, evaluating, maintaining, and retaining the appropriate numbers and skill mix of employees to achieve the organization’s objectives. Competitive advantage with respect to HRM practices encompasses those capabilities, resources, relationships, and decisions that permit a firm to capitalize on opportunities and avoid threats within its industry. However, the question remains, including whether HRM practices guarantees positive firm efficiency outcome. Further, the limited research in HRM in emerging economies has not supported illumination of this concept of HRM practices or its firm efficiency consequences.

Firm Performance is measured in various ways, which include profitability ratios such as earnings per share, return on investment or return on equity (Drury, 2000). According to Truss (2008), determinants of organizational performance include but are not limited to; culture, Zahra et al (1990) and market orientation (Narver and Slater, 1990; Noble et al, 2002). With the disparate determinants, Abas and Yaacob (2006) claim that a single performance measure is inadequate to represent overall firm performance. Appropriate firm performance dimensions’ spawn effectiveness, efficiency and adaptability (Walker and Ruekert, 1987). Tangen (2002) posit that
measurement should be based on a limited number of measures that consist of financial and non-financial parameters. Pearce et al. (1987) reported that empirical research reveals that actual and perceived measures of performance are strongly correlated. However, a major part of literature has tended to limit itself to considering only financial aspects of performance, ignoring other outputs such as efficiency which is a major focus of this study.

Huselid’s (1995) groundbreaking study demonstrated that a set of HRM practices he referred to as high performance work systems (HPWS) were related to turnover, accounting profits, and firm market value. Since then, a number of studies have shown similar positive relationships between HRM practices and various measures of firm performance. For instance, MacDuffie (1995) found that “bundles” of HRM practices were related to productivity and quality in his sample of worldwide auto assembly plants. Delery and Doty (1996) found significant relationships between HRM practices and accounting profits among a sample of banks. Youndt, Snell, Dean, and Lepak (1996) found that among their sample of manufacturing firms, certain combinations of HRM practices were related to operational performance indicators. Likewise, Guthrie (2001) surveyed corporations in New Zealand and found that their HRM practices were related to turnover and profitability. This vein of research has been summarized by Huselid and Becker who stated that based on four national surveys and observations on more than 2,000 firms, the judgment is that the effect of a one standard deviation change in the HRM system is 10–20% of a firm’s market value (Huselid & Becker, 2000). Whereas studies have been done on HRM practices and firm performance, no research has tested the hypothesis that employing progressive HRM practices specifically employee training, material incentives, non-material incentives and performance appraisal enhances firm efficiency in a causal sense.

1.1.3. Manufacturing Firms in Kenya

Since independence, the Kenyan economy has remained predominantly agriculture, with industrialization taking an integral part of the country’s development strategies. The industrial sector’s share of monetary GDP has continued to be about 15-16% while that of manufacturing sector has stagnated at a little more than 10% over the last two decades. Manufacturing activities account for the greatest share of industrial production output and form the core of industry. Manufacturing sector makes an important contribution to the Kenyan economy and currently employs 275,800 people, which represents 13% per cent of total employment with an additional 1.4 million people employed in the informal side of the industry (Economic Survey 2012, National Development Plan 2002-2008, KAM, 2012: Central Bank of Kenya, 2008). The sector is mainly agro-based and characterized by relatively low value addition, employment, and capacity utilization and export volumes partly due to weak linkages to other sectors. To imply lack of embracing Human Resource Management Practices, and proper firm characteristics by other sub sectors.

Locally manufactured goods comprise 25 percent of Kenya’s exports. However, the share of Kenyan products in the regional market is only seven per cent of the Kshs. 968 billion regional market. The Eastern African market is dominated by imports from outside the region (Kenya Competitiveness Benchmark Report 2008). This is an indication that there is a large potential to improve Kenya’s competitiveness in the region by replacing external suppliers gradually.

In terms of sector concentration, large companies in Kenya account for a large proportion of manufacturing sectors output and employment for instance Hazlewood (1979) found that large manufacturing firms comprised only 22% of the firms but contributed over 80% of the total manufacturing surplus. In this study, the researcher distinguishes ownership as either multinational or indigenous and in many cases makes a comparative analysis along these two dimensions of ownership.

The desire to carry on this study was enhanced by the observations released by Central Bureau of Statistics 2012. The statistics revealed manufacturing sector’s performance being on decline with value added (Ksh. million) of 205.7, 202.1, 199.6, 198.3 and 190.5 in the year 2003, 2004, 2005, 2006 and 2007 respectively and its contribution to the GDP being stagnant at 10 percent since the 1960s. This has as a result led to the limited local and Foreign Direct investment (FDI) in the country and the high outflow of investment to the neighboring countries. In response to this pressure, the Government initiated several reforms and policies aimed at spurring growth and development of a vibrant manufacturing sector by 2030. However, implementation of the policies and formulation of new policies in consumer goods manufacturing firms sub sector has been constraint by inappropriate adoption human resource management (HRM) practices. Consequently, Consumer goods manufacturing firms which are viewed as major source of livelihoods in Kenya seem to have given
little impetus to improvement of livelihood both in Kenya and East Africa. Whereas studies have been conducted on Human Resource Management (HRM) practices and firm performance in manufacturing context in Kenya, no research has been undertaken on the HRM practices – firm efficiency relationship among the consumer goods manufacturing firms in Kenya. It is in view of these that this study has focused on the effect the HRM practices – firm efficiency relationship.

1.3. Objective of the Study

1.4. Hypotheses
The following hypotheses have been derived from the conceptual framework and research objectives;

\[H_0 : \text{There is no relationship between human resource management practices and firm efficiency} \]

1.5. Conceptual Framework
The independent variable is human resource management practices measured by employee training, material incentives, outcome appraisal, non-material incentives and process appraisal. The dependent variable is firm efficiency.

<table>
<thead>
<tr>
<th>Human Resource Management Practices</th>
<th>Firm Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employee Training</td>
<td>Independent Variable</td>
</tr>
<tr>
<td>Material Incentives</td>
<td>Dependent Variable</td>
</tr>
<tr>
<td>Non Material Incentives</td>
<td></td>
</tr>
<tr>
<td>Performance Appraisal</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1: Conceptual framework on the HRM practices and firm efficiency of manufacturing consumer goods firms in Kenya
Source: Self Conceptualization, 2016

2. Research Methodology

2.0. Introduction
This section discusses the research design for the study, target population, the data collection method and the data analysis method.

2.1. Research design
The study was based on positivists approach (Positivism – paradigm). Positivism is associated with quantitative research and involves hypothesis testing to obtain “objective” truth that can be used to predict what may happen at a future date (Rossman & Rollis, 2003). Based on the approach, the study adopted cross-sectional survey research design to obtain the empirical data to address the objectives of the study. A cross-sectional survey was deemed appropriate for the study because it enables the researcher to collect data and make inferences about a population of interest at one point in time. Cross-sectional surveys have been described as snapshots of the populations about which they gather data. Cross-sectional surveys can be conducted using any mode of data collection, including interviews and mailed or self-administered questionnaires. Furthermore, this research design is appropriate approach where the aim of the study is to determine the existence and extent of a problem (Nachmias & Nachmias 2008). This design also ensures that each respondent filled in only one questionnaire during the data collection period without filling the questionnaires at some other time in the future. Thus the responses obtained were only applied for the period under study.

2.2. Study Area
The study was conducted in Kenya. The geographical area of Kenya covered in the study was obtained from the Nation Business Directory (2012), Kenya Association of Manufacturers Directory (2012), Kenya Industrial Research Institute (KIRDI), and the Yellow Pages of the Telephone Directory (2012). This study area was chosen because it enabled the researcher to gather sufficient data within reasonable time and also essential for obtaining respondents from medium and large manufacturing consumer goods firms, a characteristic which was key for this study. Most previous studies on manufacturing industry have been focusing on large firms classifying them under three main sectors, namely, the agro-based industrial sector, engineering and construction industrial sector and the chemical and mineral industrial sector. This study sought to focus on specifically the medium and large manufacturing consumer goods firms. The study area chosen conveniently met the requirements of the study.
2.3. Population and Sampling Size of the Study
The population of the study comprised medium and large multinational and indigenous manufacturing consumer goods firms in Kenya. This included all manufacturing of consumer goods firms in the selected industries in all major towns in Kenya totaling to 65 firms after excluding 3 firms used in pretesting stage.

<table>
<thead>
<tr>
<th>Description</th>
<th>Total No. of Firms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium and Large Manufacturing Consumer goods firms in Kenya</td>
<td>68</td>
</tr>
<tr>
<td>Firms used in Pretesting</td>
<td>3</td>
</tr>
<tr>
<td>Firms targeted</td>
<td>65</td>
</tr>
<tr>
<td>Firms Responded</td>
<td>50</td>
</tr>
</tbody>
</table>

Table 1: Total number of medium and large manufacturing of consumer goods firms in Kenya
Source: Survey data 2013

2.4. Sampling Size and Sampling Techniques
The sampling size is a list of potential members of the target population to be included in the sample (Mugenda and Mugenda, 1999). It is a list of elements from which a sample is drawn (Cooper and Schindler, 2001). In this study, the sample size consisted of all the 65 medium and large manufacturing consumer goods firms in Kenya. This sample size was selected using census sampling techniques. This technique was chosen because the units of study were not too many and the manufacturing consumer goods firms are concentrated in major cities and towns in Kenya and, therefore, accessible, and not prohibitive in terms of cost, time, and other resources (Saunders et al., 2007). Furthermore, a census survey is suited to development of a broad industry-based understanding for studying the hitherto enigmatic problems of the Kenyan manufacturing consumer goods firms. The sampling size was developed from firms registered in the Nation Business Directory (2012), Kenya Association of Manufacturers Directory (2012), Kenya Industrial Research Institute (KIRDI), and the Yellow Pages of the Telephone Directory (2012). All these Directories were relied on since there was no single directory that seemed to provide a listing of all relevant firms. Among the three directories, the Nation Business Directory was the most comprehensive. Three Directories of the manufacturing consumer goods firms were considered. These were; firms dealing with processing sugar, edible oils, soaps and detergents and those firms that dealt with beverages (both alcoholic and non-alcoholic). Studies involving whole populations of firms are common, especially where only a specific firm category is being studied (Weguko, 1984; and Mulaki, 2000). Aosa (1992) used a more or less similar approach in which his sample was made up of firms that he approached and were willing to participate. He went ahead to study all the 84 firms that were willing to participate.

2.5. Data Collection

2.5.1. Sources of Data
Primary data was collected using a self-administered questionnaire on the HRM practices, Technology innovation, firm characteristics and firm performance. Primary data were sought for due to their proximity to the truth and control over error, (Copper & Schindler, 2003). Secondary data from existing company and government records were also reviewed and utilized in this study.

2.5.2. Data Collection Procedure
The questionnaire was administered following the total design method Dillman, (2000) with pre-notification correspondence and a personal hand delivered survey with the help of three research assistants. Initially, the interviewer sought appointments with respondents through telephone with little success. In order to enhance response rate and response quality, the researcher and research assistant personally delivered the questionnaires. This procedure was preferred due to the geographical dispersal of the units of study, being scattered throughout the country. The approach also helped in securing appointments for return visits because in most cases the correspondents were either busy or away from office. It was indeed rare to find all three respondents on site. To ensure that the respondents were familiar with the research issues, the respondents were purposively sampled. The literature has long maintained that the Chief Executive Officer (C.E.O) should be the single respondent in such studies as they are considered to possess the most overall understanding and knowledge of the firm’s operations and performance, (Byars, 1984; Eelbana & Child, 2007). Bowman & Ambrosini (1997) and other critics, nevertheless, assert that reliance on single despondent can increase the possibility of common method variance. Consistent with such researchers’ suggestions to use multiple respondents, and to limit measurement error, this study targeted top management team members considered key informants in matters of firm performance and strategy: The Chief Executive Officer, the Chief Production Manager, the Chief Marketing Manager and the Chief Human Resource Manager. Furthermore, the upper echelons theory posits that an organization’s performance is largely shaped by the perceptions and opinions of key informants and also that such key informants are the most knowledgeable regarding overall firm performance, HRM practices and technology innovation planning (Valenti et al., 2011). The participants were assured of confidentiality and anonymity of responses and were in addition, promised a copy of the research report as incentive. Since the data analysis was at firm level, the responses were aggregated to provide a more accurate representation of the firm. A total of 65 copies of the questionnaires were delivered. Out of these 50 were successfully administered representing a response rate of 76.9%. This was well above the 25% reported in management research in emerging economy context, (Rettab et al., 2008).
2.5.3. Instrument for data Collection

The questionnaire was developed and categorized in such a way that every study objective was addressed, by ensuring that there were specific questions addressing each objective. It was divided into six (6) sections, each capturing specific aspects of the study. Likert – type statements anchored on a five – point scale ranging from strongly disagree (1) to strongly agree (5) was used to capture specific indicators for each objective. The Likert – type scale is widely used in many social science studies. For instance, Andy and Lockett (2003) used a five-point scale and got the mean and standard deviations for each indicator. Similarly, Zou & Tamer (2002) used a seven-point scale in their study. In this study, a five-point scale was used as it was seen to be sufficient to provide clear distinctions between the points, which made it unnecessary to use higher scales.

2.5.4. Reliability Test(s) for Data Collection Instrument

Kothari (2004), stresses that reliability of an instrument can be assessed by asking such questions as who collected the data, the sources of the data and whether proper methods were used. Reliability refers to the extent to which an experiment, test, or any measuring procedure yields the same result on repeated trials. Reliability of a measure thus indicates its stability and consistency (Sekran, 2000). Instrument stability is usually assessed using the test retest procedure whilst the most prevalent method for measuring reliability of self administered survey questionnaires involves estimating internal consistency. In the case of a test retest procedure, a test is administered twice to the same respondents with some time lag in between. If repeated administration of the instrument shows consistent results, the instrument is deemed reliable (Carmines & Zellar, 1979). For this study, stability was not assessed since it was not feasible to administer a second instrument to the same study respondents. Previous research sites difficulty in assessing stability using the test retest procedure when targeting a respondent pool consisting of C.E. O’s and other senior managers, Whisman & McClelland (2005).

When the instrument consistency is assessed the focus is an inter-item correlation or internal consistency. The fundamental assumption underlining internal consistency is that items are all slightly different measures of the same concept Nunnally (1978) and therefore the inter-correlation between items will be high. In this regard, Cronbach’s coefficient alpha is commonly used as a measure of internal consistency. The value of coefficient alpha ranges from zero (no internal consistency) to one (complete internal consistency) (Cronbach,1951). The Cronbach alpha coefficient threshold is regarded as 0.6. (Hair et al., 1998). Moreover, Carmines & Zellner (1979) indicate that Cronbach’s alpha is a superior measure of internal consistency than test retest or split halves approaches. In the current study the Cronbach alpha was computed for technology innovation, HRM practices, organization characteristic and firm performance. Although the constructs developed in this study were measured primarily on previously validated measurement items and strongly grounded in the literature, they were modified somewhat to suit the Kenyan context.

2.5.5. Validity Test(s) for Data Collection Instrument

Instrument validation was done in several ways which included content analysis in which each item of the instrument was carefully analyzed and checked to ensure that it conveyed the necessary message. The validity of a measure is defined as the extent to which a construct or a set of measures correctly represents the concept of study, and the degree to which it is free from any systematic or non-random error (Nunnally, 1978). It is widely held that establishing the reliability of a measurement scale should precede an assessment of its dimensionality because the presence of unreliable measurement items enhances a scale's lack of uni-dimensionality (Cortina, 1993). In this regard reliability is, therefore, a necessary condition for validity (Peter, 1981; Peter & Churchill, 1986). The foregoing section has reported the positive results of reliability analysis. Researchers also assert that no single statistic offers a general index of validity of the measurements made. Consequently, three basic types of validity have been proposed (Sekaran, 2000): content validity (whether the measure adequately measure the concept), construct validity (measures whether the instrument tap the concept as theorized) and convergent validity (tests whether two instruments measuring the concept correlate highly).

2.5.5.1. Content Validity

A measure has content validity if there is a general agreement among the subjects and researchers that the instrument has measurement items that cover all aspects of the variable being measured. This form of validity, also known as face validity, subjectively assesses the correspondence between the individual items and the concept through ratings by expert judges. The objective of the content validity is to ensure that the selection of construct items extends past empirical issues to include theoretical and practical considerations (Robinson et al., 1991).

For the HRM practices construct, the literature depicts a vast corpus propositioning conceptual frameworks. The pool of items generated from this exercise that were deemed to represent the underlying dimensions of the HRM practices variable were given to an expert panel of five academics drawn from the fields of human resource management, strategic management, information technology and marketing. These experts expressed their degree of agreement/disagreement with the use of the different items on a Likert scale of five points. This process yielded 15 items to represent HRM practices scale. Regarding the technology innovation, the literature review revealed that empirical research is dominated by Garavan et al. (2008) typology. The measurement scale used in this study is the Dixon, et al. (2001) scale, preferred in the literature because of its multi item nature which is deemed to adequately cover the underlining theoretical dimensions. Lastly, the literature revealed that firm performance is best measured by multi item scales. The instrument used in this scale is adopted from Hess & Robinson (1984) which has been used successfully in previous studies (Allen & Gell, 2000; Allen & Kilmann 2001).
In summary the process produced an instrument: 15 items for measuring HRM practices; 3 item scale for measuring technology innovation; 1 measuring organization characteristics; 2 for measuring HRM practices and 9 items for measuring firm performance. In an interactive manner the expert panel revised the questions and response options until all evaluators conquered that each question and each response option fairly reflect accurately the requisite underlying dimension for each construct. Moreover, the pretext subject indicated that the content of each construct was well represented by the measurement items employed.

2.5.5.2. Construct Validity
Construct validity refers to the degree to which a measurement scale assesses the theoretical construct it purports to assess (Nunally, 1978). Support of construct validity can be gleaned from several sources of different methodological approaches, Cronbach (1951), Cronbach & Mehhl (1955). Since this research sought to operationalize the study constructs, as multi-item measurement scales, an assessment of the dimensionality of the measurement scales should, therefore, indicate evidence of construct validity. It is widely held that the application of factor analysis is crucial in providing evidence of the dimensionality of multi-item measurement scales (Carmines & Zeller, 1979; DeVellis, 1991; Nunally, 1978). Factor analysis seeks to summarize the information contained in a number of original variables into a smaller set of compact dimensions or constructs with minimum loss of information on original variables (Hair et al., 2006).

The two prevalent forms of factor analysis are the exploratory factor analysis (EFA) and confirmatory factor analysis (CFA). EFA seeks to uncover the underlying structure of a relatively large set of variables, and to establish links when the observed and latent variables are unknown or uncertain, (Byrne, 1998). It is also the most common form of factor analysis and is used when there is no prior theory. In this procedure the factor loadings are used intuit the factor structure of the data and, in this manner, assists to determine unidimensionality of constructs is assessed. CFA, on the other hand, is used to test or confirm the relationship between the factors and the latent variables on the basis of pre-established theory.

With HRM practices posited to be at embryonic stage, CFA is not appropriate for developing this constructs (Ahire et al., 1996) and, therefore, EFA was better suited for construct validation. In this study, EFA was performed using principle components analysis (PCA) to identify constructs, and subsequently for each construct separately. According to Hair et al. (2006), factor loadings greater than 0.30 are considered to meet the minimal level; loadings of 0.40 are considered more important; if the loadings are 0.50 or greater, then they are considered highly significant. A principle factor analysis loading of 0.50 was used as the cut-off point in this study. In this study, the method of Principal Components Analysis (PCA) using SPSS Version 16 was applied to the same data used in the assessment of internal consistency reliability. The use of this technique also allowed for the factors to be treated as uncorrelated variables in order to satisfy multi-collinearity assumptions (Punj & Stewart, 1983).

The instrument was divided into several sections to ensure that each section reflect material for the specific objective. Validation also involved thorough examination by research experts from Maseno University. This involved several presentations to colleagues and Doctoral Programme resource persons of the School of Business and Economics, and guidance from the researcher’s supervisors. A pre-test was done by administering the instrument to three conveniently selected managers to fill, without disclosing to them that this is not the final research. The managers were also asked to evaluate the statements for relevance and whether they were meaningful and clear, loaded or offensive. This approach of pre-testing a questionnaire was successfully used by Dixon, et al (2001) in testing for validity and reliability of their questionnaire. On the basis of the responses, the instrument was adjusted appropriately before embarking on the data collection exercise.

2.5.5.3. Convergent and Discriminant Validity
Convergence means that evidence from different sources corroborate meaning of a construct, whereas discriminability means that one can differentiate the construct that may be similar (Kerlinger, 1996). Campbell and Fiske (1959) suggested the multitrait multimethod matrix technique, essentially a correlation of matrices, to assess the dual concepts of convergent-discriminant validity. In this method, those correlation coefficients among scores for a given property measured by different instruments should be higher than correlation coefficients among scores for different properties measured by similar instruments. The multitrait matrix provides additional evidence of construct dimensionality. In order to demonstrate that the dimensions are distinct the correlation coefficient with a column should be less than the coefficient alphas found in the diagonal (Churchill, 1979). In this study the internal reliability is much higher than inter item reliability. The correlation coefficients range upto 0.58 and many of the pairs of variables are significantly correlated. The Cronbach alphas range between 0.62 and 0.96. These analysis shows strong evidence of discriminant validity since the Cronbach’s alphas exceed the inter-item correlation in all cases based on the exploratory factor analysis and multi trait matrix, there is strong empirical support for discriminant validity. These studies salutary contribution is the validation of Conant et al., (1990) scale in an emerging economy context in an African and a Kenyan business environment.

2.5.6. Testing the Assumptions for Linear Regression Analyses
This study employed linear regression analysis in the analysis of data. Therefore it was essential to establish that the assumptions of linear regression were not violated. The need to identify any violations of the underlying assumptions of linear is emphasized in research Hair et al., (1998). The assumptions which are considered necessary if conclusions can be drawn about a population on the basis of a regression analysis done on sample data includes, type of variables, homoskedasticity, linearity, normality of residuals and multicollinearity (Field, 2000). These assumptions are considered in the following subsection.
2.5.6.1. Types of Variables
As recommended by Field (2005), all predictor variables must be quantitative or categorical and the outcome variable must be quantitative, continuous or unbound. In this study, both the predictor variables and the outcome variable, HRM practices were quantitative. This means that the type of variables did not violate the requirements of regression analysis in this regard.

2.5.6.2. Linearity and Homoscedasticity
For linearity condition to be met, the outcome variable for each increment of predictor(s) should lie along a straight line (Feld, 2000). Testing this assumption is important because modeling a non-linear relationship using a linear model limits the generalization of the data (Field, 2005). Homoscedasticity assumption is satisfied when at each level of the predictor variable(s) the variance of the residual terms is constant. If the assumption does not hold the accuracy of the \(r \) coefficient may be untenable. Assuming that distribution of data is homoscedastic when indeed is actually heteroscedastic leads to a result which overestimates the goodness of fit as measured by the Pearson coefficient. A plot of standardized differences between the observed data and the values predicted by the regression model (ZRESID) against the standardized predicted values of every dependent variable (ZPRED) was used to assess whether the assumption of random error and homoscedasticity had been satisfied. This was done for the firm Efficiency, and the independent variable. The normal P-P plots and scatter plots, depicting satisfaction of linearity and homoscedasticity conditions, respectively is indicated in figure 2-4.

![Histogram of regression standardized residuals for Efficiency](source: Survey data (2013))

![Normal P-P plot of regression standardized residuals for Efficiency](source: Survey data (2013))
2.5.6.3. Testing for Multicollinearity
It was also necessary to test for existence of multicollinearity because highly collinear items can distort the results substantially or make them unsuitable and not generalizable and harmful to multiple regression (Hair et al., 1998). Multicollinearity occurs when two or more items measure the same entity and are therefore identical (Ahire et al., 1996). This study assessed the multicollinearity of the independent variables by means of tolerance and variance inflation factor (VIF). A tolerance of below 0.10 or a VIF greater than 10 is regarded as indicative of serious multicollinearity problems (Field, 2000, Hair et al. 1998). Table 2 shows the results of the multicollinearity statistics of the study variables.

<table>
<thead>
<tr>
<th>Model</th>
<th>Collinearity Statistics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tolerance</td>
<td>VIF</td>
</tr>
<tr>
<td>Non-material Incentives</td>
<td>.603</td>
<td>1.659</td>
</tr>
<tr>
<td>Performance Appraisal</td>
<td>.879</td>
<td>1.138</td>
</tr>
<tr>
<td>Employee Training</td>
<td>.663</td>
<td>1.509</td>
</tr>
<tr>
<td>Material Incentives</td>
<td>.772</td>
<td>1.295</td>
</tr>
<tr>
<td>a. Dependent Variable: Organizational Performance</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Collinearity Statistics
Source: Survey Data (2013)

As indicated in Table 2 the tolerance statistics were all well above 0.10 and the variance inflationary factor (VIF) values were all well below 10. It can, therefore, be safely concluded that there was no multicollinearity within the data.

2.6. Data Analysis
Data was analyzed by use of descriptive statistics, correlation and regression analysis. Descriptive Statistics helped the researcher to discover miscoded values, missing data and other problems in the data set, (Cooper and Schindler, 2003). It also made it easier for the researcher to organize, summarize, interpret and communicate quantitative information obtained from the study, (Mutai, 2001). Pearson correlation analysis was conducted to determine the direction, strength and significance of the bivariate relationship between human resource management practices and firm performance. A high r value denoted a very strong and significant correlation, thereby implying a very strong relationship. Regression analysis was used to determine the effect of HRM practices on firm efficiency (Hekkert, et al, 2007). Researchers have posited that regression analysis is the most general and conservative method for testing contingency hypothesis in which interaction exists (Ojera, 2011; Aguinis, 2004; Aiken & West, 1991; Cohen & Cohen, 1983; Jaccard, et al., 1990; Dowling & Mc Gee, 1994, Covin & Slein, 1989).

The analysis techniques were appropriately chosen to suit the requirements of each objective. The objective of the study which sought to establish the relationship between HRM practices and firm efficiency in the study area was analyzed by use of correlation and simple bi-variate regression analysis.

The resulting regression models may be expressed as follows;

\[Y_i = a + \beta X_i + \epsilon \]

Model 1
Where Y is the dependent variable (firm efficiency), X is the theoretically defined independent variable (Human Resource Management practices), Y_i (where $i=1-65$) are the firms, while β_1 (where $j=1-4$) are the regression coefficients, X_i (where $i=1-4$) are the HRM practices indicators (Employee training, material incentives, non-material incentives and performance appraisal), and ε is the error term corresponding to each model.

\[
Y_i = a_1 + \beta_1 X_i + \varepsilon_i
\]

Where

\[
i = 1 \text{th firm}
\]

\[
i = 1-65
\]

Y - Firm Efficiency

a_1 - Constant

b_1, b_2, b_3 - Coefficients

X_i - Human Resource Management Practices

ε - Error Term

The coefficient of determination (r^2 value) is a measure of the degree of variability in the dependent variable, in this case firm efficiency attributable to predictor variables namely: the configurationally aspect of human resource management practices. In the model the beta coefficient (β value) estimates the degree of change in competitive advantage resulting from each unit change in human resource management practices.

2.7. Data Presentation

The data obtained from the questionnaire was summarized using descriptive statistics such as mean, standard deviation, frequencies and percentages. After screening of data, summarized frequencies were produced to give measures of central tendencies which include simple means. Other statistical presentations included frequency distributions and proportions such as percentage (%). The analyzed data was presented using Tables. Qualitative data was summarized and categorized according to common themes and presented in frequency distribution Tables.

3. Results and Discussion

3.1. Introduction

Data is analyzed, presented and discussed in this chapter. Both descriptive and inferential statistics were used in the analysis. The researcher followed the four phases normally used in many research projects, namely data clean up, data reduction, data differentiation, and explanation. Data clean up involved editing, coding and tabulation of the findings. This helped in detection of any anomalies in the responses, and in assigning specific numerical values to the responses for further analysis. The main techniques of data analysis used in this study are descriptive statistics, correlation and regression analysis and factor analysis.

3.2. Results of the Study

3.2.1. Categories of Firms

This study targeted 65 manufacturing firms which were identified from various sources as specified in chapter three. A total of 50 firms responded out of the expected 65 firms targeted for the study, giving a response rate of 76.9%, compared to previous studies, this is high and thus adequate. Of these, 38 (76%) were indigenous while 12 (24%) were multinational firms. These findings are presented in Table 3. The findings by categories of firms are presented in Table 3.

<table>
<thead>
<tr>
<th>Categories of firms</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indigenous</td>
<td>38</td>
<td>76.0</td>
</tr>
<tr>
<td>Multinational</td>
<td>12</td>
<td>24.0</td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Table 3: Categories of Firms (In Percentage)

Source: Survey data (2013)
3.2.2. Geographical Distribution of Firms

The distribution of the firms geographically revealed that 80% of the firms were in Nairobi, while 20% were found outside Nairobi, of all the 40 firms found in Nairobi, 77.5% were indigenous while 22.5% were multinational firms. The study findings further show that in Nairobi alone, multinational firms have 26%, 8%, 64% and 2% for soaps and detergents, edible oils, beverages and sugar respectively whereas Indigenous firms have 43%, 20%, 17% and 20% for soaps and detergents, edible oils, beverages and sugar respectively. Other regions of the country for multinational firms had 30%, 25%, 25% and 20% for soaps and detergents, edible oils, beverages and sugar respectively, whereas indigenous 45%, 15%, 15% and 25% for soaps and detergents, edible oils, beverages and sugar respectively. Table 4 illustrates these findings.

<table>
<thead>
<tr>
<th>Products Category</th>
<th>NAIROBI</th>
<th>OTHERS</th>
<th>TOTALS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Multinational</td>
<td>Indigenous</td>
<td>Multinational</td>
</tr>
<tr>
<td></td>
<td>(n=9)</td>
<td>(n=31)</td>
<td></td>
</tr>
<tr>
<td>Soaps and detergents</td>
<td>26</td>
<td>43</td>
<td>50</td>
</tr>
<tr>
<td>Edible oils</td>
<td>8</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>Beverages</td>
<td>66</td>
<td>17</td>
<td>25</td>
</tr>
<tr>
<td>Sugar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 4: Geographical Distribution of the Firms (In Percentage)

Source: Survey data (2013)

In this study the word ‘indigenous’ does not necessarily imply local ownership, it is on the basis of operation, the word indigenous is used because they are local firms without subsidiaries outside Kenya. Only few of the indigenous firms are owned by non Kenyan, unlike majority of the multinational firms.

3.2.3. Main Product Categories Produced by the Firms

The study findings show a majority (56%) of the multinational firms were in the soaps and detergents industry, with none of the multinational firms engaging in the sugar industry. In the beverages industry and edible oils, multinational firms comprised 8% and 18% respectively whereas indigenous firms had 4%, 10% and 4% for soaps and detergents, beverages and sugar respectively. It is important to note that a number of firms handled more than one product, but they were supposed to indicate the major product. Thus a number of firms involved in edible oil manufacturing also produce soaps and so on. The Table 5 reveals the above data.

<table>
<thead>
<tr>
<th>Product Category</th>
<th>Firm category</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>indigenous</td>
<td>multinational</td>
</tr>
<tr>
<td>Soap and detergents</td>
<td>4.0%</td>
<td>56.0%</td>
</tr>
<tr>
<td>Beverages</td>
<td>10.0%</td>
<td>8.0%</td>
</tr>
<tr>
<td>Edible oils</td>
<td></td>
<td>18.0%</td>
</tr>
<tr>
<td>Sugar</td>
<td>4.0%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>18.0%</td>
<td>82.0%</td>
</tr>
</tbody>
</table>

Table 5: Main Product Categories Produced by the Firms

Source: Survey data (2013)

3.2.4. Distribution of the firms according to Age

Age is a salient component in any studies as a dimension of time it often has influence on variables related to the behavior of organizations, such as performance. This study sort to find out from the respondents to indicate the year the firms they worked for started operating in Kenya. The reason behind this is because growth of manufacturing firms is directly related with technology innovation, investments, Human Resource practices put in place and economic development. From the study findings among the 50 firms that indicated their age, it was found that some firms were as young as only 4 years, while the oldest firm was 87 years. Giving a range of 83 years between the oldest and the youngest firm. This information is summarized in Table 6.

From the study findings as indicated in Table 6, it is worth noting that majority of the multinational firms that participated in the study were aged over 11 years with 40% aged between 11 and 40 years, with only 2% below 10 years old, whereas 25% of the indigenous firms were less than 10 years old. It is further noting that 28% of the multinationals were formed before 1950, whereas only 2.2% of the indigenous firms existed before 1950. The study also revealed that 58% of the multinational firms were at least 41 and above years old, as compared to 2.2% of the indigenous firms that were above 41 years old. The study further shows that 42% of the multinational firms were formed after 1970, while 97.8% of the indigenous firms were formed after 1970. In establishing the firms’ mean age, the
computation revealed 21.5 years and 41.5 years for indigenous and multinational firms respectively. This study therefore indicates that multinational firms in Kenya are much older than the indigenous ones. The total mean age is 27.5 years, and this indicates that the industry has been in existence quite for some time and could have done better than it is currently.

The categorization of the ages was done basing on major economic and political trends in Kenya. For instance, the period before 1960 may be said to be the pre-independence period, which was characterized by struggle for independence that culminated with Kenya getting independence in 1963 and a Republic in 1964. Only 7.2% of the manufacturing firms existed by 1960, while the others been formed after 1960. Some 28% of the multinational firms involved in this study even before 1950, while only 2.2% of the indigenous firms existed. It is noted that no indigenous firms were formed between 1960 and 1969 while 30% of the multinational firms were formed during this time. The decade of 1970-1979 recorded formation of 30% of the multinational firms and 21.8% of the indigenous firms. Overall, 23.8% of all the manufacturing firms were formed during this period. This period was also a period of rapid growth, during which economy grew at an average of 6.6%. Between 1980 and 1989, some 32% of the indigenous firms were formed, while no multinational firms were formed. During this period, the world was experiencing the oil crisis, and high prices of commodities. It was the period of external shocks of the oil crisis which stunted economic growth, bringing it to 4%, although it later recovered to 8.2% in 1977 as a result of the ‘Coffee boom’. It was also during this period that structural adjustment programmers started to take root in Kenya. These conditions may partly explain the poor performance in terms of formation of new firms. Between 1990 and 1999, only 10% of the multinational firms and 18.6% of the indigenous firms were formed. Overall, only 16.5% of the manufacturing firms were formed during the period. There was some improvement in economic performance, which was however, suppressed by droughts, poor commodity prices, and world recession. Structural adjustment programmes were also widely applied, and the economic liberalization began in earnest. Since 2000, some 25% of the indigenous firms were formed while only 2% of multinational firms were formed. Overall 19.5% of the manufacturing firms were formed. During this time, Kenya’s economic performance was at its lowest, going down to negative 0.3% in the year 2000.

<table>
<thead>
<tr>
<th>Year of establishment</th>
<th>Age (yrs)</th>
<th>Multinational firms (Percent) n=12</th>
<th>Indigenous firms (Percent) n=38</th>
<th>Total firms (Percent) n=50</th>
</tr>
</thead>
<tbody>
<tr>
<td>After 2000</td>
<td>10 and below</td>
<td>2</td>
<td>25</td>
<td>19.5</td>
</tr>
<tr>
<td>1990-1999</td>
<td>11-20</td>
<td>10</td>
<td>18.6</td>
<td>16.5</td>
</tr>
<tr>
<td>1980—1989</td>
<td>21-30</td>
<td>0</td>
<td>32.4</td>
<td>24.6</td>
</tr>
<tr>
<td>1970 – 1979</td>
<td>31-40</td>
<td>30</td>
<td>21.8</td>
<td>23.8</td>
</tr>
<tr>
<td>1960 – 1969</td>
<td>41-50</td>
<td>30</td>
<td>0.0</td>
<td>7.2</td>
</tr>
<tr>
<td>Before 1960</td>
<td>Over 51</td>
<td>28</td>
<td>2.2</td>
<td>8.4</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 6: Age Distribution of the Manufacturing Firms
Source: Survey data (2013)

3.2.5. Firm size Measured by Permanent Employees

The result in Table 7 indicates that multinational firms have the highest number of permanent employees with 34% between 300 and 400 permanent employees and 24 above 400 permanent employees. Indigenous firms have majority of their permanent employees (10%) between 50 and 100.

<table>
<thead>
<tr>
<th>Number of Employees</th>
<th>Firm category</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>indigenous</td>
<td>multinational</td>
</tr>
<tr>
<td>between 50 and 100</td>
<td>10.0%</td>
<td>6.0%</td>
</tr>
<tr>
<td>between 100 and 200</td>
<td>8.0%</td>
<td>8.0%</td>
</tr>
<tr>
<td>between 200 and 300</td>
<td>10.0%</td>
<td>10.0%</td>
</tr>
<tr>
<td>between 300 and 400</td>
<td>34.0%</td>
<td>34.0%</td>
</tr>
<tr>
<td>above 400</td>
<td>8.0%</td>
<td>24.0%</td>
</tr>
<tr>
<td>Total</td>
<td>18.0%</td>
<td>82.0%</td>
</tr>
</tbody>
</table>

Table 7: Distribution of Permanent Employees by Number and Firm Category
Source: Survey data (2013)

3.2.6. Membership of Associations

The Table 7 shows that 96% of the respondents indicated that their firms are members of the Kenya Association of Manufacturers while a paltry 4% of respondents indicated that they are not members of Kenya Association of Manufacturers. This can be attributed to the firms having a recognized body by the Government to champion their case or demands. Majority of the respondents (57.1%) indicated that multinational firms are members of the National Chamber of Commerce and Industry while none of the indigenous firms are members of the National Chamber of Commerce and Industry. This can be the reason to why most indigenous firms are not exhibiting good performance and quality products.
Table 8: Distribution of Firms by Association

<table>
<thead>
<tr>
<th>Association</th>
<th>Indigenous</th>
<th>Multinational</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>National Chamber of Commerce and Industry</td>
<td>14.3</td>
<td>57.1</td>
</tr>
<tr>
<td>Kenya Association of Manufacturers</td>
<td>70</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 8: Distribution of Firms by Association
Source: Survey data (2013)

3.2.7. Average Annual Sales for the year 2006 and 2007
Respondents were asked to indicate their firm’s average annual sales in the years 2006 and 2007, in millions. For multinational firms in the year 2006, 12%, 22%, 22%, 12%, 8%, and 6% of respondents said firm’s annual sales were; less than 100 million, 100-200 million, 200-300 million, 300-400 million, over 400 million and 99 standing for non respondents respectively whereas the indigenous, 4%, 10% and 4% of respondents said firm’s annual sales were; 100-200 million, 200-300 million and over 400 million respectively. In the year 2007, multinational firms; 12%, 24%, 20%, 20% and 6% of respondents said firm’s annual sales were; 100-200 million, 200-300 million, 300-400 million, over 400 million and 99 standing for non respondents respectively whereas indigenous firms; 14% and 4% of respondents said firm’s annual sales were; 200-300 million and over 400 million respectively. Table 9 illustrates these findings.

Table 9: Average Annual Sales for the Year 2006 and 2007
Source: Survey data (2013)

<table>
<thead>
<tr>
<th>Average Annual Sales</th>
<th>Year</th>
<th>Total</th>
<th>Year</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2006</td>
<td>2007</td>
<td>2006</td>
<td>2007</td>
</tr>
<tr>
<td>less than 100 million</td>
<td>12.0%</td>
<td>12.0%</td>
<td>12.0%</td>
<td>12.0%</td>
</tr>
<tr>
<td>100-200 million</td>
<td>22.0%</td>
<td>26.0%</td>
<td>22.0%</td>
<td>26.0%</td>
</tr>
<tr>
<td>200-300 million</td>
<td>12.0%</td>
<td>12.0%</td>
<td>12.0%</td>
<td>12.0%</td>
</tr>
<tr>
<td>300-400 million</td>
<td>4.0%</td>
<td>8.0%</td>
<td>4.0%</td>
<td>8.0%</td>
</tr>
<tr>
<td>over 400 million</td>
<td>6.0%</td>
<td>6.0%</td>
<td>6.0%</td>
<td>6.0%</td>
</tr>
<tr>
<td>99</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Table 9: Average Annual Sales for the Year 2006 and 2007
Source: Survey data (2013)

3.3. Firm Performance
Organizational performance deals with how well a firm is able to meet its objectives. It is known that the ultimate goal of any business organization is to be able to achieve specific objectives such as profit maximization, cost effectiveness and customer satisfaction. A firm that is able to achieve these objectives is perceived as being more successful than one that is not able to meet the objectives hence the measurement of organizational performance is synonymous with measurement of success in the organization. There are many ways of measuring performance, which include profitability such as return on investment, return on equity or earnings per share. However, in many cases performance is not just about profits, and in most cases a successful firm may not necessarily be making profits at a particular point in time, depending on the purpose for which performance is measured. Organizational performance was measured by efficiency. This is one among the many indicators of performance as suggested by Lusthaus et al. (2000).

3.3.1. Efficiency
For efficiency, the key indicators of measured included frequency of machine breakdowns, rate of staff turnover, and so on. A firm cannot be efficient if it is always experiencing machine breakdowns, or if it has very high staff turnover.
From the study findings, 6% of the firms experienced machine breakdowns ‘most of the times’, while 10% of the firms never experienced machine breakdowns. Further, 42% ‘sometimes’ experienced machine breakdowns while 42% rarely experienced breakdowns. This showed that firms were doing fairly well in managing their machinery, and hence enhancing their efficiency. It was found that 38% of the multinational firms experienced machine breakdowns ‘sometimes’, and 34% said that they ‘rarely’ experienced breakdowns. Only 4% of indigenous firms said that they ‘sometimes’ got machine breakdown while 8% said they ‘rarely’ got machine breakdown as shown in Table 10. This shows that multinational firms are more efficient in terms of managing their machinery and equipment than the indigenous firms. Table 10 shows the results.
Experience of major machine breakdown

<table>
<thead>
<tr>
<th>Firm category</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Indigenous</td>
</tr>
<tr>
<td>most times</td>
<td>6.0%</td>
</tr>
<tr>
<td>some times</td>
<td>4.0%</td>
</tr>
<tr>
<td>Rarely</td>
<td>8.0%</td>
</tr>
<tr>
<td>Never</td>
<td>6.0%</td>
</tr>
<tr>
<td>Total</td>
<td>18.0%</td>
</tr>
</tbody>
</table>

Table 10: Frequency of Machine Breakdown
Source: Survey data (2013)

The results in Table 11 show that 36% of the firms experienced ‘moderate’ to ‘very high’ rate of staff turnover, while 64% of the firms experienced ‘low’ to ‘very low’ rates of staff turnover. The current study found that indigenous firms experience a higher level of staff turnover of 16% than multinational firms which had 2%. This may be due to higher wage rates paid by the multinational. In fact, 24% of multinational firms reported that they experienced very low levels of staff turnover. Other relevant indicators of efficiency are presented in Table 12.

<table>
<thead>
<tr>
<th>Rate of staff turnover</th>
<th>Firm category</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>indigenous</td>
<td>multinational</td>
</tr>
<tr>
<td>very high</td>
<td>4.0%</td>
<td>4.0%</td>
</tr>
<tr>
<td>High</td>
<td>12.0%</td>
<td>2.0%</td>
</tr>
<tr>
<td>Moderate</td>
<td>2.0%</td>
<td>16.0%</td>
</tr>
<tr>
<td>Low</td>
<td>40.0%</td>
<td>40.0%</td>
</tr>
<tr>
<td>very low</td>
<td>24.0%</td>
<td>24.0%</td>
</tr>
<tr>
<td>Total</td>
<td>18.0%</td>
<td>82.0%</td>
</tr>
</tbody>
</table>

Table 11: Rate of Staff Turnover
Source: Survey data (2013)

The results in Table 12 shows that making best use of all staff to the best of their ability was indicated as the most important measure of efficiency, with a mean score of 4.12 and standard error of 0.062. Providing for good value for cost and making best use of financial resources, with a mean score of 4.10 and 4.08 respectively, and making sure all broken machines are repaired on time (3.94) are all important indicators of efficiency.

<table>
<thead>
<tr>
<th>Indicators of Efficiency</th>
<th>N</th>
<th>Mean</th>
<th>Std. Error</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>make best use of resources</td>
<td>50</td>
<td>4.08</td>
<td>.048</td>
<td>.340</td>
</tr>
<tr>
<td>administration provide good value for cost</td>
<td>50</td>
<td>4.10</td>
<td>.043</td>
<td>.303</td>
</tr>
<tr>
<td>make best use of all staff to the best of their ability</td>
<td>50</td>
<td>4.12</td>
<td>.062</td>
<td>.435</td>
</tr>
<tr>
<td>all broken machines are repaired on time</td>
<td>50</td>
<td>3.94</td>
<td>.072</td>
<td>.512</td>
</tr>
<tr>
<td>experiencing of no stock out as a result of machine brake down</td>
<td>50</td>
<td>3.54</td>
<td>.104</td>
<td>.734</td>
</tr>
<tr>
<td>operation machine is continuously serviced</td>
<td>50</td>
<td>3.78</td>
<td>.119</td>
<td>.840</td>
</tr>
<tr>
<td>Grand Totals</td>
<td>50</td>
<td>23.56</td>
<td>.448</td>
<td>3.164</td>
</tr>
</tbody>
</table>

Table 12: Mean Scores for Common Indicators of Efficiency
Source: Survey data (2013)

3.4 Hypothesis Testing and Operational Models
This part presents the testing of the various hypotheses advanced in chapter two. It involves use regression analysis. Initial analysis involved computations of measures of central tendency to summarize the qualitative information into numerical format. The researcher has also developed predictive regression models to estimate the dependent variables in all the cases where independent and dependent variables are correlated, so that it is possible for one to know the relative importance of the various independent variables. Although there are many models that can be used, the choice of the relevant model is largely on such factors as the type of data generated, number of dependent and independent variables and nature of the relationships expected. For instance, Kibera (1979) relied mainly on analysis of variance (ANOVA) and regression analysis to assess the contribution of receiver variables on mean scores of the dependent variables. On their part, Cohen and Cohen (1983) used hierarchical regression analysis in which composite performance was regressed on the state of the employee (well being, negative mood, positive mood) to find out how these states affected performance. Wright et al (2004) used bivariate correlation analysis to find out the relative importance of dispositional and situational influences on organizational performance. Fox and Dayan (2004) used ANOVA in their study to find out how investors’ decisions are influenced by comparison of one’s achievements with others. The current study uses bivariate as well as multivariate analysis to come up with models for the relationships in the various areas.
3.4.1. Test of Hypothesis 1

Both correlation and regression analysis were used to test hypothesis one. Correlation analysis was used to identify the strength and direction of a linear relation between independent variable (Human Resource Management practices indicators) and dependent variable (firm efficiency) while regression analysis was used to estimate the effect of this independent variable (Human Resource Management practices indicators) on the dependent variable (firm performance indicators). Hypothesis one stated in the null form that there was no relationship between human resource management practices and firm efficiency of manufacturing firms in Kenya. The alternative hypothesis stated the opposite. The results are presented in Tables 13.

The correlation results in Table 13 show that all human resource management practices significantly related to organizational efficiency. Employee training ($r = .536, P < 0.01$), Material incentives ($r = .588, P<0.01$) and performance appraisal ($r = .428, P<0.01$) were significantly and positively related to firm efficiency. However non-material incentives was negatively and significantly related to organizational efficiency ($r = -.485, p<0.01$) as indicated in Table 13. This means HRM practices indicators employee training, material incentives and performance appraisal had significant association with firm effectiveness association. These results imply that consumer goods manufacturing firms in Kenya are focused on the HRM practices to enhance firm effectiveness but differently on firm financial viability, efficiency and relevance.

<table>
<thead>
<tr>
<th>Organization Efficiency</th>
<th>Pearson Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employee Training</td>
<td>.536(**)</td>
</tr>
<tr>
<td>Material Incentives</td>
<td>.588(**)</td>
</tr>
<tr>
<td>Non Material Incentives</td>
<td>-.485(**)</td>
</tr>
<tr>
<td>Performance Appraisal</td>
<td>.428(**)</td>
</tr>
</tbody>
</table>

Table 13: Correlation Coefficients for the Association between Human Resource Management Practices and Organizational Efficiency

** Correlation is significant at the 0.01 level (2-tailed).
* Correlation is significant at the 0.05 level (2-tailed).
Source: Survey data (2013)

The regression results of control variable (firm category) and firm efficiency show that the error terms are independent for all the models as the Durbin Watson D statistics were close to two. In addition, the regression models significantly explained the variances in firm efficiency as the F-values for these models were significant. This is confirmed by the R^2 value which is efficiency ($R^2=.425, p <0.05$) as indicated in Table 14.

<table>
<thead>
<tr>
<th>Efficiency</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>5.136 (0.000)</td>
</tr>
<tr>
<td>Firm category</td>
<td>-0.580 (0.000)</td>
</tr>
<tr>
<td>R^2</td>
<td>.661</td>
</tr>
<tr>
<td>R^2</td>
<td>.425</td>
</tr>
<tr>
<td>F</td>
<td>37.258 (0.000)</td>
</tr>
<tr>
<td>Durbin-Watson</td>
<td>2.066</td>
</tr>
</tbody>
</table>

Table 14: The Direct Effect of Firm Category on Dependent Variables (Firm Performance: Effectiveness, Efficiency, Financial Viability, and Relevance)
Source: Survey data (2013)

In order to test hypothesis one, regarding the effect of human resource management practices on firm performance, multiple linear regression was carried out. The four indicators of HRM practices namely Employee training, material incentives, Non-material incentives and Performance appraisal were introduced in the models and the results are given in the Table 15.

The results reveal that the error terms were statistically independent with all the D statistic values close to two. The regression models also explained the variances in all the performance measures since the various F statistics were significant at one percent significance level for effectiveness, efficiency and financial viability and five percent significance level for organizational relevance. As shown in Table 15, performance appraisal had a significant effect on effectiveness ($\beta=.198, p<.05$) while material incentives had positive and significant effect on efficiency ($\beta=.303, p<.01$).
Table 15: The Regression Coefficients for the Effect of HRM Practices Indicators (Training, Non-Material Incentives, Material Incentives and Staff Appraisal) on the Firm Performance Indicators (Effectiveness, Efficiency, Financial Viability, and Relevance)

Source: Survey data (2013)

<table>
<thead>
<tr>
<th></th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>2.523</td>
</tr>
<tr>
<td>(.)000</td>
<td></td>
</tr>
<tr>
<td>Firm category</td>
<td>-.356</td>
</tr>
<tr>
<td>(.001)</td>
<td></td>
</tr>
<tr>
<td>Employee Training</td>
<td>.142</td>
</tr>
<tr>
<td>(.104)</td>
<td></td>
</tr>
<tr>
<td>Non-material incentives</td>
<td>.018</td>
</tr>
<tr>
<td>(.625)</td>
<td></td>
</tr>
<tr>
<td>Material incentives</td>
<td>.303</td>
</tr>
<tr>
<td>(.000)</td>
<td></td>
</tr>
<tr>
<td>Performance appraisal</td>
<td>.082</td>
</tr>
<tr>
<td>(.088)</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>.818</td>
</tr>
<tr>
<td>R²</td>
<td>.669</td>
</tr>
<tr>
<td>F</td>
<td>17.767</td>
</tr>
<tr>
<td>(.000)</td>
<td>(df. 5,44)</td>
</tr>
<tr>
<td>Durbin-Watson</td>
<td>1.757</td>
</tr>
</tbody>
</table>

5. Summary, Conclusions and Recommendations

5.0. Introduction
This chapter presents the summary, conclusions and recommendations drawn from the findings of the study. It presents the contributions of this research to the body of knowledge. It discusses the conclusions based on the research objectives and hypotheses, implications for theory, policy and practice, implications for methodology, limitations of the study and recommendations for further research. The conclusions are based on the research objectives and on the analyses conducted in chapter four.

5.1. Summary and Conclusions
This study sought to establish the moderating effect of technology innovation and organization characteristics on the relationship between human resource management practices and firm performance in manufacturing of consumer goods firms in Kenya and was based on three specific objectives, each with several hypotheses based on the objective’s major theme. The objective of the study was to establish the relationship between Human Resource Management Practices and firm efficiency. Findings indicated high activities in the adoption of best HRM practices that enhanced firm performance among the firms. The HRM practice of material incentives reported highest positive and significant effect on firm efficiency. This implies that of the HRM practices, material incentives and performance appraisal were the most highly regarded to influence efficiency. Nevertheless, the null hypothesis was rejected and alternative hypothesis for the objective confirmed. The results are a milestone in that HRM practices has been explored and described through all the four indicators and their influence on all the firm performance indicators, contrary to what is witnessed in past studies.

5.2. Recommendation
Arising from the objective, it is recommended that the firms’ efforts on firm efficiency be enhanced by material incentives, non material incentives and performance appraisal given to employees. Contrary to prior research, this study has shown that taken as a whole HRM practices influence firm efficiency. Other independent variables and other designs may be considered in future.

5.3. Limitations of the Study
A number of limitations were identified in the conduct of this research. First the largely depended on cross sectional data which are generally limited by the virtue of being collected at one point in time and do not give sequence of events. However, studies based on cross-sectional data tend to provide information for subsequent studies in the same areas of interest. The second limitation is that the manufacturing sector has many sub-sectors that were not covered such as refined petroleum products; textiles, apparel, leather and foot-ware; forest products; Equipment; Fabricated metals; rubber and plastics; publishing and printing; furniture, tobacco and other food processing and chemicals not reviewed in this study. The context of these other sub sectors may be different too. This means that these results can only be generalized to those firms involved in production and marketing of edible oils, soaps and detergents, beverages or sugar as part of the manufacturing sector. Thus any extrapolation from these results must have this fact in mind.
The third limitation concerned the data which was collected through self report questionnaires by the employees. This method gives the respondents opportunity to describe their own experiences. This may be problematic as respondents may not remember all issues. It is also prone to social desirability bias, whereby the respondents prefer to answer questions in such a way as not portray them in bad social light.

The third limitation was the geographical spread of the firms. The firms were scattered across the whole country, including some located in very remote parts of the country, making it difficult for the researcher and the assistants to access them. However, the response came within a reasonable time, almost with the same speed as those for respondents in Nairobi.

5.4. Suggestions for Future Research

The study has several limitations that create fruitful suggestions for future research. First, the current study depended on cross sectional data which are generally limited by the virtue of being collected at one point in time and do not give sequence of events. On this basis, a similar research should be conducted using time series data to determine long term effects of the exogenous variables on effect of technological innovation and firm characteristics on the HRM practices – firm performance relationship in consumer goods manufacturing firms.

Secondly, this study is limited to the consumer goods manufacturing firms alone. Hence, the current results may be specific to the context of these firms. Future research should be extended to the service industry in order to generalize the results reported here.

Thirdly, given the limitation of this study in terms of sample size, sub-industries and HRM dimensions, future studies should consider enlarging the sample size, by incorporating other sub-industries and HRM dimensions, such as planning, selection and recruitment, labour relations, teamwork, communication and recognition as well as health and safety of human resources.

Fourthly, future research studies should also consider testing the mediating role of research institutions such as Universities. They could enhance the firm production and performance. Further to this, future research studies should consider controlling the firm age and size to test the extent of moderating effect of technological innovation. Although there may not be sufficient samples to do analysis in the research, this is still a potential topic that should be considered.

6. References

none

