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     Abstract-This paper proposes the optimal design of a 

renewable hybrid energy system consisting of solar, wind 

energy with battery storage suitable for application in remote 

areas. The study investigates the possibility of reducing the 

overall size of a system already installed in a school in Maji 

Mazuri, Kiserian.  The main aim of the study is to reduce size 

of the renewable systems and reduce energy storage. The 

study investigates the effects of reducing load demand on the 

size of the system components. DC LED lamps are proposed 

for all the lighting needs of the school in order to reduce the 

load demand especially during peak hours. The results show 

that the optimized system is able to meet the load demand. 

Homer software is used in the design and optimization of the 

renewable hybrid power system.

     Keywords- Homer, Hybrid Energy System, Solar, Wind. 

I. INTRODUCTION

With increasing concern on global environmental 
pollution and increased cost of electricity, hybrid 
energy systems based on renewable energy are now 
playing a key role in meeting current electricity 
demand. However, power produced from renewable 
sources such as solar PV and wind energy system is 
highly variable due to their intermittent nature.  This 
poses serious technical and economic challenges when 
designing stand alone hybrid energy systems due to the
uncertainties in the electricity generation. To provide 
balance between energy generation and load demand, 
energy storage systems are usually used [1]. Stand 
alone systems usually require large storage systems to 
cover for periods when there is no generation from the 
renewable resources [2]. Hybridizing solar PV and 
wind due to their complementary nature improves the 
system reliability and can significantly reduce the 
storage requirements [3] [4] [5]. 

A major challenge in the design of renewable resources 
is their intermittent nature which results in excess 

capacity and shortages. The challenge is reducing the 
shortages and excesses while ensuring the quality of 
supply [6]. Optimizing the size of the solar PV, wind 
generator and battery will improve the system 
reliability as well as reduce the overall cost of the 
system.  Optimal sizing methods for standalone hybrid 
energy systems can either be single objective or multi-
objective. In single objective the main aim is to ensure 
reliable supply while keeping the cost of the system at a 
minimum. In multi-objective optimization, the power 
supply reliability, the overall cost of the system and 
environmental considerations such as pollutant 
emissions are taken into account.

This paper proposes an optimal sizing method for an 
existing PV/wind/battery hybrid energy system by 
minimizing excess capacity and energy storage. The 
system was sized to meet all demand especially during 
peak hours, resulting in an oversized system. During 
mid-afternoon when the sun is overhead the power 
generated by PV exceeds the load demand, battery 
charging power and dump load power. The same case 
applies for the wind generator although the timing 
varies with the availability of wind. This paper 
proposes peak shaving by replacing all lighting loads 
with D.C. LED bulbs. LED lamps offer extraordinary 
power saving compared to fluorescent, compact 
fluorescent lamps and halogen lamps while giving the 
same light output.

II. ENERGY DEMAND AND RESORCES

A:  Load demand

The objective of this study was to optimize the 
design of a renewable hybrid energy system by 
reducing excess capacity from the renewable resources. 
Maji Mazuri School in Kiserian, Kajiado County has
been selected for study as it already has an existing 
system with a lot of excess electricity. Kajiado borders 
Nairobi to the South and lies in the expansive Great Rift 
Valley. The electrical load for the school is mainly for 
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lighting, electrical appliances such as radio, T.V, 
computers and water pumping.  Daily load demand is 
illustrated in Fig 1. 

Fig. 1 Daily Load Profile

There are two peaks, one occurring between 6 and 8 am 
in the morning and 7 and 10pm in the evening.  

B: Solar Radiation

Solar energy is a promising renewable energy 
resource because of its unlimited potential and 
availability. Solar radiation is determined by the 
location on the earth’s surface, the season and time of 
day. Monthly averages of solar radiation was collected 
from the Kenya Meteorological Department and used as 
inputs to the Homer software.  Monthly averages for the 
solar radiation for the year are illustrated in Fig. 2. The 
scaled annual average clearness index is 0.55 and daily 
radiation is 5.508 kWh/m2. 

Fig. 2 Monthly average Solar Radiation

Fig. 3 Annual horizontal solar radiation

C: Wind Resources

Wind energy is the fastest growing among 
renewable energy technologies. The annual monthly 
wind speeds are shown in Fig. 3. Wind speeds suitable 
for power generation are observed between the months 
of Jan to May and Sep to Dec. The period between May 
and Aug on average there is very little wind speed 
about 3m/s which results in very low output from the 
wind generator.

Fig. 3 Monthly average Wind Speeds

Fig. 4 Annual wind speeds

III. METHODOLOGY

This study seeks to optimize an existing hybrid energy 
system integrating wind energy, solar PV and batteries. 
The existing system consists of a 3.6 kW solar array, a 
6 kW wind turbine and 30 batteries rated at 12v and 
200Ah. The system is characterized by excess capacity 
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which cannot be utilized especially around midday 
resulting to a lot of wasted energy. 

In order to optimize the system this study proposes to 
separate the loads into AC and DC, this will reduce the 
peak load due to a.c. lighting requirements. All electric 
appliances will be served by AC and all lighting will be 
replaced by DC LED lamps. LED lamps offer 
extraordinary power saving compared to fluorescent, 
compact fluorescent lamps and halogen lamps while 
giving the same light output. LED lamps rated 3watts 
have been chosen to replace the existing fluorescent and 
compact fluorescent lamps. Desktop computers have 
also been replaced with laptop computers while 
television sets have also been replaced with LCD 
televisions sets to reduce power consumption.

The new energy demand for the school is illustrated in 
the following figures

Fig. 5 Daily a.c load profile

Fig.6 Daily d.c. load profile

The major components for the hybrid power system are 
solar PV panels, wind turbines, power converter and 
batteries. Solar panels are the primary source of power 
while the wind turbines and batteries provide electricity 
during periods of no generation from the solar panels.
Homer requires the number of units to be considered, 
the capital costs, replacement costs, operation and 
maintenance costs and the lifetime of the components to 

simulate the system. The figure below shows the 
considered hybrid energy system. 

Fig. 7 Hybrid Energy System

The main aim of optimizing the system is to find the 
optimal decision variables of the system components 
that will match the load to the available wind and solar 
resources throughout the year. The various decision 
variables in the system to consider include:

The size of the PV array 

The number of wind turbines

The size of the converter
The number of batteries

A. Solar Array

The Kyocera KD250GX-LFB 250 watt solar panel is 
considered for this study with one unit costing 375
dollars. The operation and maintenance costs are 
practically zero and the lifetime of the system is taken 
to be 25 years.  

B. Wind Turbine

The 1kW DC SW Whisper 200 wind turbine with
initial capital cost of 3,000 dollars is considered. The 
lifetime of the wind turbine is taken as that of the 
system to be 25 years. 

C. Power converter

A power converter is required to convert DC to AC. 
A converter of 2.5kW is considered costing 950 dollars. 
The lifetime of the power converter is 25 years.
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D. Batteries

Batteries are used in the hybrid power system to 
provide electrical power when there is little or no 
output from renewable resources. Batteries will supply 
electrical power when the renewable energy resources 
cannot meet the load requirements. The Dayliff
Champion 12V 100Ah battery is considered in this 
study.  Each battery costs 250 dollars and has an 
expected lifetime of about six years.

IV. RESULTS AND DISCUSSION

From the simulation the configuration containing one 
Whisper 200 1 kW wind turbine, 1.25 kW array, 10
batteries and 2.5kW inverter is found to be the optimum 
configuration. The optimized system is smaller in size 
compared to the existing system as shown in the 
following table.

Table 1: Comparison of designed systems

System PV array Wind Turbine Batteries

Existing 3.6 kW 6 kW 30

optimized 1.25 kW 1kW 10

The Power generated from the wind generator and solar 
PV is sufficient for the better part of the year except
during the months of May, June and July when the 
power generated is lower. The figure below shows the 
contribution of Solar PV and Wind energy resources to 
the total electricity production throughout the year. 

Fig. 8 Annual Wind Turbine Power

Fig. 9 Annual solar PV power

Batteries provide power during periods of little or no 
generation from the wind and solar generators. From 
the simulation the batteries operate optimally for most 
part of the year except during the months from May to 
September. The following figures show the batteries 
input power and state of charge (soc) throughout the 
year. 

Fig. 10 Battery input power

Fig. 11 Battery state of charge (%)

Between the months of May and September power from 
the renewable is reduced and the batteries have to be 
used regularly to provide power. There is also very little 
power generated such that the batteries are sometimes
used to the lowest allowable SOC which is 80%.

Table 2: Comparison of Capital Cost

Existing ($) Optimized ($)

PV array 5,184 1.850

Wind Turbine 5,800 3,000

Batteries 4,200 2,500

Inverter 2,420 950

Capital cost 17,604 8,300

From the results the optimized system is cheaper by 
about 9,300 dollars. This is due to the reduced size of 
PV array, number of batteries, size of inverter and the 
size of wind turbine. The total cost of replacing the 
bulbs with LED bulbs, computers and television sets is 
about 6,245 dollars. The total savings realized is about 
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3,000 dollars.  However, this does not include the 
salvage value of all the items being replaced. 

V. CONCLUSION

Most remote areas are not connected to the grid because 
of the high costs involved in grid extension. Hybrid 
energy systems offer a promising alternative for 
electrification of these areas. The systems integrate
locally available renewable resources with battery 
storage to ensure grid quality electricity supply.

From the simulation results a Solar-wind-Battery 
system consisting of a 1.25 kW solar array, one wind 
turbine, 10 batteries and a 2.5 kW inverter is found to 
be the optimum system. The system is able to reliably 
meet the load demand throughout the year and reduce 
excess capacity. 

The analysis of results shows significant contribution of 
solar PV and wind turbines. Batteries are extensively 
employed between the months of May to September 
when the output from renewable sources is low.

Significant cost savings are realized by optimizing the 
system by reducing the peak loads which are associated 
with lighting and a.c appliances. This shows that 
demand side management can significantly reduce the 
load demand and thus reduce the overall size of the 
system.
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Abstract-The Nairobi Area Power distribution network supplies 

over 50% of Kenya’s national load demand. The increase in load 

demand in the network, over the years has generated interest to 

the network’s voltage stability status. Voltage stability is an 

important factor that needs to be taken into consideration during 

the planning and operation of power systems in order to avoid 

voltage collapse and subsequently partial or full system blackout. 

The study of the voltage stability characteristics can provide a 

way to prevent this event from happening.

This paper presents a study to assess the voltage stability of 

Nairobi Area Power distribution network using static analyses 

methods. The network power flow problem is formulated, and 

solution attained using Newton Raphson method to determine 

the base operating voltages and angles, the power flows, and to 

compute the full Jacobian matrix. The Sensitivity and Modal 

analyses methods are used to investigate the network weak buses 

and branches, and to analyse the response of network generators 

to incremental changes in reactive loadings. In the rest of this 

works, the P-V and Q-V curves analysis methods are used to 

compute the active and reactive power margins respectively, of 

the identified weak buses. The analysis is performed to simulate 

the peak loadings conditions of June, 2012

. 

Keywords— Voltage stability, Sensitivity analysis, Modal 

analysis, Active power Margins and Reactive power margins.

I. INTRODUCTION

In the last few years the need to increase the 
transfer capacity of the existing distribution 
networks without major investments and also 
without compromising the security of the power 
system has led to a situation where utilities operate 
power systems relatively closer to voltage stability 
limits [1]. 
The continued growth in load demand or 
contingency   in the network may lead to a state of 
voltage instability, and eventually, voltage collapse.

Voltage stability is concerned with the ability of 
power system to maintain acceptable voltages at all 
buses under normal conditions and after being 
subjected to a disturbance [2]. Voltage stability can 
be attained by sufficient generation and 
transmission of energy. Generation and 
Transmission have definite capacities that are 
peculiar to them and should not be exceeded in a 

healthy power system.  The main factor causing 
voltage instability is the inability of the power 
system to meet the demand for the reactive power 
in a heavily stressed system 
[2], [3]. 

Therefore a power system is said to experience 
voltage instability when a disturbance or sudden 
increase in load demand or change in system 
conditions causes a progressive and uncontrollable 
decline in voltage levels. Voltage collapse refers to
the process by which the sequence of events leading 
to voltage instability   leads to low unacceptable 
voltages in a significant part of the power system 
[2]. It is the result of accumulative processes 
involving the actions and interactions of many 
devices, controls and protective systems.

Most utilities now consider Voltage stability in
their planning and operation of the power systems 
in order to avoid voltage collapse and subsequently 
partial or full system blackout. 

A number of techniques are available in literature 
for the analysis of voltage stability. These 
techniques are based on either steady state and/or 
dynamic analysis methods [2]. Since the system 
dynamics that influence voltage stability are usually 
slow, many aspects of the problem can be 
effectively analysed using static methods, which 
examine the viability of the equilibrium points 
represented by a specified operation of the power 
system. Static analysis methods, in addition to 
providing information with regard to the sensitivity 
or degree of stability, also involves the computation 
of only algebraic equations and are thus efficient 
and faster. 

This paper presents an assessment of the voltage 
stability of the Nairobi Area Power Distribution 
Network using static analyses approaches. The
power flow problem for the network configuration 
was formulated and solution attained by Newton 
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Raphson method, using a MATLAB based program.
The VQ sensitivity and QV modal analyses
methods are employed to investigate the network 
weak buses and branches, and also the response of 
the network generators to the incremental changes 
in reactive loadings. The buses identified as weak 
are further investigated by analysing their P-V and 
Q-V curve characteristics on PowerFactory
DIgSILENT software, to determine their active and 
reactive power margins respectively.  The analysis 
is performed to simulate the peak loading 
conditions of June, 2012.

The paper is organized as follows: Section I
served as introduction. In section II we discuss the 
voltage stability analysis,   section III presents a
case study using the Nairobi Area Power 
Distribution Network, and in IV we outline 
conclusions and recommendations.

II. VOLTAGE STABILITY ANALYSIS

The linearized steady state system power voltage 
equations are presented by [2], [4]: 

1 2

3 4

J JP
(1)

J JQ V

Where P   and Q are the mismatch active and reactive 

powers, V and are the unknown voltage and angle 

correction vectors, and 

1 2

3 4

J J

J J
 - is the network full Jacobian matrix.

A. Q-V Sensitivity Analysis

The elements of Jacobian matrix give the 
sensitivity between the power flows and bus voltage 
changes [2], [5], [6].The system voltage stability is 
affected by both P and Q. However at each 
operating point if P is kept constant then voltage 
stability is evaluated by considering incremental 
relationship between Q and V.  

Based on these considerations then, in equation 
(1) if P 0 , then 

1 2

3 4

J J0
(2)

J JQ V

1

4 3 1 2Q J J J J V (3)

RQ J V (4)

1

R 4 3 1 2J J J J J (5)

RJ - is the reduced Jacobian matrix of the system. 

From equation (4),

1

RV J Q (6)

The matrix 1

RJ is the reduced V-Q Jacobian and 

its thi diagonal element is the sensitivity at bus i .

The V-Q sensitivity at a bus represents the slope 
of Q-V curve at a given operating point. A positive 
V-Q sensitivity is indicative of stable operation; the 
smaller the sensitivity the more stable the system]. 
As the stability decreases, the magnitude of the 
sensitivity increases, becoming infinite at the 
stability limit. Conversely a negative sensitivity is 
indicative of unstable operation. A small negative 
sensitivity represents a very unstable operation [2], 
[7], [8], [9].  

B. Q-V Modal Analysis

Voltage stability characteristics of the system can 
be identified by computing the eigenvalues and 
eigenvectors of the power flow (reduced) Jacobian 
matrix, RJ    [2], [3], [5], [7], [9].

Let  RJ (7)

Where  

=Right eigenvector of matrix RJ

=Left eigenvector of matrix  RJ

=diagonal eigenvalue of matrix RJ    

From equation (7),

1

RJ (8)

Incremental changes in reactive power and 
voltage are related by equation (6). Substituting 
equation (8), 

1V Q (9)

Or 
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(10)i i

i i

V Q

Where

i - is the thi eigenvalue

i - is the thi right eigenvector of RJ

i -is the thi row left eigenvector of RJ

Each eigenvalue i and the corresponding right 

and left eigenvectors i and i define the thi   mode 

of V-Q response.
Since 1   equation (9) can be written as:

1V Q (11)

 Or 

1v q (12)                                   

Where 
v V is the vector of modal voltage variations, and 

q Q is the vector of modal reactive power variations

The thi modal voltage variation can therefore be written as:

  i i

i

1
v q (13)                                                                    

From equation (13) the stability of mode i with 

respect to reactive power changes is defined by the 
modal eigenvalue i . Large values of i  suggest 

small changes in modal voltage for reactive power 
changes. As the system is stressed the value of i

becomes smaller and the modal voltage becomes 
weaker. If the magnitude of i is equal to zero, the 

corresponding modal voltage collapses since it 
undergoes infinite changes for reactive power 
changes. A system is therefore defined as stable if 
all the eigenvalues of RJ are positive. The 

bifurcation or voltage stable limit is reached when 
at least one eigenvalue reaches zero; that is one or 
more modal voltages collapses. If any of the 
eigenvalues is negative the system is unstable. The 
magnitudes of eigenvalues provide a relative 
measure of the proximity of the system to 
instability.

1) Bus Participation Factors:     The left and right 

eigenvectors corresponding to the critical mode in 
the system can provide information concerning 
voltage instability, by identifying the elements 

participating in these modes. The relative 
participation of bus k  in mode i , is given by bus 

participation factor:

ki ki ikP (14)

Bus participation factors corresponding to the 
critical modes can predict nodes or areas in a power 
system susceptible to voltage instability. Buses with 
large participation factors to the critical mode 
correspond to the most critical of system buses. In 
practical systems with several thousand buses, there 
is usually more than one weak mode associated 
with different parts of the system, and the mode 
associated with the minimum eigenvalue may not 
be the most troublesome mode as the system is 
stressed [2].

2) Branch Participation Factors:   If we assume vector 

of modal reactive power variations, q

corresponding to mode i to have all elements equal 

to zero except the thi , which equals to 1, then the 

corresponding vector of bus reactive power 
variations is 

(i) 1
(i)Q q q (15)                                   

Where i is the thi right eigenvector of RJ

The vector of bus voltage variations is

(i) (i)

i

1
V Q (16)                                                     

The corresponding vector of bus angle variations is

(i) 1 (i)
1 2J J V (17)                                              

The linear relationships for the real and 
imaginary powers at a bus can be obtained for small 
variations in variables  and V by forming total 

differentials [10] as follows:

For a PQ bus bar

k k
k m m

m mm k m k

P P
P V (18)

V
                     

k k
k m m

m mm k m k

Q Q
Q V (19)

V
                     

For  PV bus bar, only equation (18) is used since kQ is not 

specified. For slack bus bar, no equation is used.
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With angle and voltage variations for both the 
sending end and the receiving end known, the 
linearized change in branch reactive loss can be 
calculated [2].

The relative participation of branch j in mode i is given by 

the participation factor:

loss
ji

loss

Q for branch j
P (20)

ma x imum Q for all branches
       

Branch participation factor indicates for each mode which 
branches consume the most reactive power in response to an 
incremental change in reactive load.   Branches with high 
participations are either weak links or are heavily loaded [2]. 

3) Generator Participation Factor:           The relative 

participation of machine m in mode i , is given by generator 

participation factor [2].

m
m.i

Q for machine m
GPF (21)

max imum Q for all machines

The generator participation factor indicates for each mode 
which generator supply most reactive power in response to 
an incremental change in system reactive loading.
Generator Participation factors provides important 
information regarding proper distribution of reactive 
reserves among all machines. 

Generators with high  .m iGPF are important in 

maintaining stability of mode i [2]. 

C. P-V and Q-V curves Analysis

At the voltage collapse point, the maximum 
power transfer limit has been reached, and therefore 
operation of power system faces difficulties. For a 
satisfactory operation, a sufficient power margin 
must be allowed [2]. In assessing the network 
proximity to voltage collapse point, P-V and Q-V
curves are plotted and analysed.  
It has been argued in literature that Q-V curve 
technique is preferable when determining the 
reactive supply problems, whereas the P-V curve 
analysis is preferable for providing power loading 
and transfer indications [11].

1) P-V Curves:  The P-V curves have been used widely 

for predicting the margins of voltage stability. For a given 

value of active power, there are two possible voltages (higher 

voltage with lower current or lower voltage with higher 

current). The normal operation corresponds to higher voltage 

solution [2], [9], [12], [13]. 

The P-V curve at a load bus is produced by incrementally 

increasing the active power, P and performing series of power 

flow solutions for the different loading levels, until the 

maximum power transfer limit is reached. 

The P-V curve is plotted using the calculated values of 

voltages corresponding to the incremental changes of P values 

at the candidate bus.  A typical P-V curve is shown in Fig 2.1

Fig. 2.1: Typical  (P-V) Curve

As shown in Fig 2.1 the real power margin at a load bus is 

the Megawatt (MW) distance from the operating point to the

voltage collapse point. 

2) Q-V Curves:   The Q-V relationship represents the  

sensitivity and variation of a bus voltage with respect to 

reactive power injections or absorptions [2].  A system is 

voltage stable if V-Q sensitivity is positive for every bus and 

voltage unstable if V-Q sensitivity is negative for at least one 

bus.

The Q-V curves are used by many utilities for determining 

proximity to voltage collapse so that operators can make good 

decision to avoid losing system stability [11]. 

The Q-V curves are produced by incrementally increasing 

the reactive power demand, Q at the candidate bus, and 

running series of power flows with each change until the 

power system is not able to meet the demand for the reactive 

power.

A typical Q-V curve is shown in Fig. 2.2.  As seen in the 

figure, the Reactive Power Margin is the Mega Volt Ampere 

reactive (MVAr) distance from the operating point to the

critical voltage.

III. CASE STUDY
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Figure 1 shows the single line diagram of the 
Nairobi Area supply distribution network.  It
consists of 66kV radial distribution lines originating 
from four bulk power supply points. Rings of
transmission lines at 132kV and 220kV supplies the 
bulk supply points from six hydroelectric and two 
geothermal power stations. The network also has 
two Diesel generators and one small hydroelectric 
power plants injecting power at 66kV.  

Fig.2.2: Typical (Q-V) Curve

Apart from the 66kV voltage level, the 
distribution network has other voltage levels: 33kV,
11kV and the low voltages. But this study is mainly 
on the 66kV network. 

A. Network voltage operating conditions

The power flow problem was formulated and 
solved by Newton Raphson method using a 
MATLAB based program to obtain the operating 

voltages and angles, line flows and the full Jacobian 
matrix.

The voltage variation criteria in Kenya are +/- 6% 
for distribution networks and +/- 10% for 
transmission networks [14]. Table I of section IV 
shows buses operating outside this criterion.

B. Q-V Sensitivity analysis

The MATLAB program further computed the 
Reduced Jacobian and the reduced V-Q Jacobian 
matrices from the full Jacobian matrix.

The sensitivity factors of the load buses are 
evaluated from the diagonal elements of the 
reduced V-Q Jacobian matrix.  Figure 2 of section
IV shows the buses with highest sensitivity factors
in the network. 

C. Q-V Modal analysis

The MATLAB program was used to compute the 
eigenvalues, the right and left eigenvector matrices 
of the reduced Jacobian matrix, from which the bus 
and branch participation factors were evaluated. 

Table III and IV of section IV shows the smallest modal 
eigenvalues for the network operating condition. 

Figure 3 of section IV shows buses with highest 
bus participation factors for the network operating 
condition. 

Figures 4 of section IV shows the branches with 
highest branch participation factors in the network. 
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Figure 1: Nairobi Area Power Supply Distribution Network as at July, 2012. 

Figures 5 of section IV shows the generator buses with 
highest generator participation factors in the network. 

D. Determination of Active Power Margins. 

The P-V curves in this research were plotted in 

PowerFactory DIgSILENT software, after modelling the 

network shown in Fig 1. The plotting is done by the software 

based on the principles outlined in section II.

The real power margin is calculated by subtracting the P 

value at the base operating point from the maximum 

permissible real power, maxP , which is at the collapse point, as 

illustrated in Fig 2.1 of section II. 

Figure 6 of section IV shows the P-V curves for the buses 

considered weak in the network. 

E. Determination of reactive Power margins

The data for plotting the Q-V curves were obtained by 

recording the reactive power demands corresponding to active 

power increments in part D, until the maximum loading limit 

is reached.

The reactive power margin, Q is computed by subtracting 

the Q values at the operating point from the maximum 

reactive power, maxQ which is at the maximum loading limit, 

as is illustrated in section II. Figure 7 of section IV shows the 

Q-V curves of the buses considered weak in the network.

IV. RESULTS AND ANALYSIS

The buses which are operating outside the 
recommended voltage criteria are shown in Tables I.  

TABLE I  
 BUSES OPERATING OUTSIDE VOLTAGE CRITERIA

BUS 27 29 42 51 55

VOLT.
(P.U) 0.913 0.932 0.936 0.938 0.927

Figure2 shows the buses with the largest Q-V
sensitivity factors for the network. Buses with high 
sensitivity factors are comparatively weaker in the 
network. The study shows buses 42(Magadi), 55 
(Karen), 27 (EPZ) and 48 (Kikuyu) are the most 
sensitive buses in the network, and therefore weak 
nodes. 
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Fig2: Largest Bus sensitivity Factors

Tables II shows the magnitudes of smallest modal 
eigenvalues. The magnitude of the smallest 
eigenvalue gives indication of the network 
proximity to voltage collapse.  

TABLE II
THE SMALLEST EIGENVALUE

MODE 30 39 40 33 34 32 31 35

EIGENVALUE 0.7 1.1 2.2 2.6 2.6 3.1 3.3 5.3

Figure3 shows buses with dominant bus 
participation factors. Buses with high participation 
factors are weak nodes in the network. The study 
shows buses 55(Karen), 48(Kikuyu), 56(KPC 
Ngema) and 57(Gigiri W/Works) are the weak
nodes in the network.  

Fig. 3: Largest Bus Participation Factors

Figure 4 shows the network branches which have
dominant participation factors.  Branches with 
higher participation factors are weak links in the 
network. They are either overloaded or consumers 
of most reactive power. The study shows branches 
37-48(Limuru-Kikuyu), 37-20(Limuru-Nairobi 
North) and 48-55 (Kikuyu-Karen) are the weak
links in the network.

Fig. 4: Largest Branch Participation Factors

Figure 5 shows generator buses with the highest 
Generator participation factors. The Generators 
participation factors indicate for each mode, which 
generators supply the most reactive power in 
response to the system incremental reactive power 
loadings. The result shows that generators 6
(Olkaria II) and 7 (Kiambere) have the highest 
participation factors. These generators are 
important in maintaining the stability of the critical 
mode. 

Fig. 5: The Largest Generator Participation factors

Table III shows the active and reactive power
margins for the buses considered weak in the 
network. 

TABLE III
ACTIVE AND REACTIVE POWER MARGINS FOR 

NETWORK WEAK BUSES

Bus No. Voltage (p.u) Active 
Power 
Margin 
(MW)

Reactive 
Power 
Margin 
(MVAr)

42 0.936 14.3099 2.9058
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Abstract- Voltage stability has become a serious threat of modern power system operation nowadays. To tackle this problem 
properly, load shedding is one of the effective countermeasures. However, its consequences might result in huge technical and 
economic losses. Therefore, this control measure should be optimally and carefully carried out. Conventional methods of system 
load shedding are too slow and do not effectively calculate the correct amount of load to be shed. This results in either excessive
or insufficient load reduction. Metaheuristic algorithms are becoming an important part of modern optimization. A wide range of 
Metaheuristic algorithms have emerged over the last two decades. This paper presents an overview of the extent to which 

metaheuristic algorithms have been utilized in optimal under frequency and under voltage load shedding.
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1. INTRODUCTION

Because of computational drawbacks of 
conventional numerical methods in solving 
complex optimization problems, researchers 
may have to rely on new algorithms. Heuristic 
algorithms typically intend to find a good 
solution to an optimization problem by ‘trial-
and-error’ in a reasonable amount of computing 
time. Here ‘heuristic’ means to ‘find’ or ‘search’ 
by trials and errors. There is no guarantee to 
find the best or optimal solution, though it might 
be a better or improved solution than an 
educated guess. Any reasonably good solution, 
often suboptimal or near optimal, would be 
good enough for such problems. Broadly 
speaking, local search methods are heuristic 
methods because their parameter search is 
focused on the local variations, and the optimal 
or best solution can be well outside this local 
region. Metaheuristic algorithms are higher-
level heuristic algorithms. Here, ‘meta-’ means 

‘higher-level’ or ‘beyond’, so metaheuristic 
means literally to find the solution using higher-
level techniques, though certain trial-and-error 
processes are still used. Broadly speaking, 
metaheuristics are considered as higher-level 
techniques or strategies which intend to 
combine lower-level techniques and tactics for 
exploration and exploitation of the huge space 
for parameter search [1-4]. 
There are two important components in modern 
metaheuristics, and they are: intensification and 
diversification, and such terminologies are 
derived from Tabu search .  For an algorithm to 
be efficient and effective, it must be able to 
generate a diverse range of solutions including 
the potentially optimal solutions so as to explore 
the whole search space effectively, while it 
intensifies its search around the neibourhood of 
an optimal or nearly optimal solution. In order 
to do so, every part of the search space must be 
accessible though not necessarily visited during 
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the search. Diversification is often in the form 
of randomization with a random component 
attached to a deterministic component in order 
to explore the search space effectively and 
efficiently, while intensification is the 
exploitation of past solutions so as to select the 
potentially good solutions via elitism or use of 
memory or both [4-6].
Any successful metaheuristic algorithm requires 
a good balance of these two important, 
seemingly opposite, components [6]. If the 
intensification is too strong, only a fraction of 
local space might be visited, and there is a risk 
of being trapped in a local optimum, as it is 
often the case for the gradient-based search such 
as the classic Newton-Raphson method. If the 
diversification is too strong, the algorithm will 
converge too slowly with solutions jumping 
around some potentially optimal solutions. 
Typically, the solutions start with some 
randomly generated, or educated guess, 
solutions, and gradually reduce their 
diversification while increase their 
intensification at the same time, though how 
quick to do so is an important issue.
Another important feature of modern 
metaheuristics is that an algorithm is either 
trajectory-based or population-based.  In 
trajectory-based algorithm, the path of the active 
search point (or agent) forms a Brownian 
motion-like trajectory with its movement 
towards some attractors. In population based 
algorithm, the parameter search is carried out by 
multiple agents in parallel. It is difficult to 
decide which type of method is more efficient as 
both types work almost equally successfully 
under appropriate conditions. A good 
combination of these two would lead to better 
metaheuristic algorithms.

2. NATURE INSPIRED 

METAHEURISTIC ALGORITHM

The naturally inspired metaheuristic algorithm 
includes genetic algorithms (GA), particle 
swarm optimization (PSO), simulated annealing 
(SA), ant colony optimization (ACO), bee 
algorithms (BA), harmony search (HS), 

algorithms (FA), photosynthetic algorithm (PA), 
enzyme algorithm (EA) and Tabu search

3. APPLICATION OF METAHEURISTIC 

ALGORITHMS IN OPTIMAL LOAD 

SHEDDING.

In recent years, the word ‘metaheuristics’ refers 
to all modern higher-level algorithms [4], 
including Particle Swarm Optimization (PSO), 
Simulated Annealing (SA), Evolutionary 
Algorithms (EA) including Genetic Algorithms 
(GA), Tabu Search (TS), Ant Colony 
Optimization (ACO), Bee Algorithms (BA), 
Firefly Algorithms (FA), and, certainly 
Harmony Search (HS) and Cackoo search (CS)
Over the last decades, many meta-heuristic 
algorithms have been successfully applied to 
various engineering optimization problems. For 
most complicated real-world optimization 
problems, they have provided better solutions in 
comparison with conventional numerical 
methods. In regard to optimal load shedding the 
following nature inspired algorithm have been 
applied [1-4].

3.1 PARTICLE SWARM OPTIMIZATION

A new particle swarm optimization based 
corrective strategy to alleviate overloads of 
transmission lines is presented [6]. A direct 
acyclic graph (DAG) technique for selection of 
participating generators and buses with respect 
to a contingency is presented. Particle swarm 
optimization (PSO) technique has been 
employed for generator rescheduling and/or 
load shedding problem locally, to restore the 
system from abnormal to normal operating state. 
The effectiveness of the proposed approach is 
demonstrated for different contingency cases in 
IEEE 57 and modified IEEE 118 bus systems. 
The result shows that the proposed approach is 
computationally fast, reliable and efficient, in 
restoring the system to normal state after a 
contingency with minimal control actions.

Congestions or overloads in transmission 
network are alleviated by generation 
rescheduling and/or load shedding of 
participating generators and loads. The two 
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conflicting objectives 1) alleviation of overload 
and 2) minimization of cost of operation are 
optimized to provide pareto-optimal solutions. 
A multiobjective particle swarm optimization 
(MOPSO) method is used to solve this complex 
nonlinear optimization problem. A realistic 
frequency and voltage dependent load flow 
method which considers the voltage and 
frequency dependence of loads and generator 
regulation characteristics is used to solve this 
problem. The proposed algorithm is tested on 
IEEE 30-bus system, IEEE 118-bus system, and 
Northern Region Electricity Board, India 
(NREB) 390-bus system with smooth as well as 
nonsmooth cost functions due to valve point 
loading effect [7].

An optimal load shedding approach to enhance 
voltage stability employing a combination of 
modal analysis and particle swarm optimization 
(PSO) is presented[8],[19]. At first as a 
preventive control action the best transformers 
tap setting is indicated by PSO optimization to 
get the most possible voltage stability margin 
then as a corrective control action after 
contingencies the proposed approach is 
organized as a multi-objective optimization 
problem which reveals the best location and the 
lowest level of load shedding for special 
protection systems (SPS) in the direction of 
improving the voltage stability margin as well 
as the voltage profile.

A new optimization model to minimize power 
loss and the load curtailments necessary to 
restore the equilibrium of operating point is 
proposed [9]. The solution algorithm is based on 
the particle swarm optimization (PSO) method 
in which the load shedding would be considered 
as the penalty in the optimization cost function. 
The aim function would be optimized for 
minimum power loss under normal operating 
conditions and minimum load shedding during 
emergency conditions. In contrary to the other 
load shedding

A method for optimal allocation of fast and slow 
VAR devices using particle swarm optimization 

under different load levels is proposed [10]. 
These devices are supposed to be utilized to 
maintain system security in normal and 
contingency states, where corrective and 
preventive controls are implemented for the 
contingency cases. Load shedding and fast VAR 
devices are used in the corrective state in order 
to quickly restore system stability even they are 
expensive, while cheap slow VAR devices can 
be used in the preventive state to obtain the 
desired security level.

An approach to optimally allocate FACTS 
devices based on Expected Security Cost 
Optimal Power Flow (ESCOPF) under 
deregulated power system is proposed. The aims 
of the approach are both to minimize device 
investment cost and to maximize benefit defined 
as difference between Expected Security Cost 
(ESC) with and without FACTS installation. 
The problem is solved using Particle Swarm 
optimization (PSO) for attaining optimal 
FACTS allocation [11-13].

An automatic learning framework for the 
dynamic security control of a power system is 
presented. The proposed method employs a 
radial basis function neural network (RBFNN), 
which serves to assess the dynamic security 
status of the power system and to estimate the 
effect of a corrective control action applied in 
the event of a disturbance. Particle swarm 
optimization is applied to find the optimal 
control action, where the objective function to 
be optimized is provided by the RBFNN. The 
method is applied on a realistic model of the 
Hellenic Power System and on the IEEE 50-
generator test system, and its added value is 
shown by comparing results with the ones 
obtained from the application of other machine 
learning methods [14].

3.2 GENETIC ALGORITHM

A new optimization approach for planning 
under-frequency load shedding using a variant 
of a genetic algorithm (GA) is described. The 
load shedding strategy consists of a given 
sequence of feeder disconnections, minimizing 
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total load curtailment while taking into account 
load dynamic characteristics [15-16].

A genetic algorithm (GA) is employed to search 
for the optimal supply restoration strategy in 
distribution networks. An 'integer permutation' 
encoding scheme is adopted in which each 
chromosome is a list of indices of switches. The 
status of each of these switches is decided 
according to graph theory subject to the radiality 
constraint of the distribution networks. Each
chromosome then maps to a feasible network 
topology. A special gene '0' is also introduced 
into the chromosome. Instead of representing a 
switch, this is a flag that keeps some parts of the 
network disconnected enabling the GA to find 
the optimal load shedding strategy where 
necessary [17].

A novel planning method using genetic 
algorithm (GA) to achieve minimization of load 
shedding is proposed. The frequency of a power 
system declines rapidly when generator outage 
occurs. The general solution is to install 
sufficient under-frequency relays to pull 
frequency back to normal range. In this study, a 
single machine infinite bus (SMIB) is utilized to 
simulate system load with genetic algorithm for 
estimating the optimal load shedding and 
shedding ratio in each stage. Simulated results 
indicate that the proposed GA-based method is 
both feasible and effective to facilitate optimal 
load shedding planning [18].

3.3 ANT COLONY OPTIMIZATION

An ant colony optimization (ACO) based 
algorithm for solving the optimal load shedding 
problem is proposed. Two principal concerns of 
the problem are addressed. The appropriate load 
buses for the shedding are identified by 
sensitivities of voltage stability margin with 
respect to the load change at different buses. 
Then, the amount of load shedding at each bus 
is determined by applying ACO to solve a 
nonlinear optimization problem formulated in 
the optimal power flow framework. The 
performance of the proposed ACO based 

method is illustrated with a critical operating 
condition of the IEEE 30-bus test system [19].

4. DISCUSSION AND CONCLUSION

From the literature review described above it is 
evident that researchers have developed new 
optimization methods by imitating natural or 
behavioral phenomena on earth. The most 
commonly used metaheuristic being the particle 
swarm optimization. Genetic Algorithm and ant 
colony optimization have also been applied 
though not intensively. Although the HS 
algorithm has not been utilized at all in load 
shedding optimization, it has been successfully
applied to a wide variety of practical 
optimization problems like pipe-network design 
[20], structural optimization [21], vehicle 
routing problem [22], combined heat and power 
economic dispatch problem [23], and scheduling 
of multiple dam system [24]. The Cuckoo 
search (CS) also has not been applied in 
optimization of load shedding. It is a newly 
evolved metaheuristic algorithm developed 
recently by Xin-She Yang and Suash Deb in 
2009 [25]. It was proven in [18] that the CS was 
more generic and robust than the
PSO and GA in optimizing multimodal 
objective functions. Through simulations 
running on various standard test functions, CS 
was found to be more efficient in finding the 
global optima with higher success rates. This is 
partly due to the fact that there are fewer 
parameters to be fine-tuned in CS than in PSO 
and GA [26]. To the best of our knowledge, so 
far, CS was successfully used for mechanical 
engineering problems, which were spring design 
optimization and welded beam design [27]. 
Hence, CS has a great potential also to be as an 
effective alternative besides other evolutionary 
algorithms in handling load shedding 
optimization problems. There is therefore need 
for a research to be carried out to establish its 
feasibility in optimal load shedding.
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Abstract – Modeling a wind turbine is important in understanding its behavior especially for developing a controller 

for maximum power point tracking. The relationship between the various variables in a wind turbine and its output 

power constitutes the mathematical model of the wind turbine. Among these variables, the power coefficient is the 

most important especially for maximum power point tracking. It is a non linear function of tip speed ratio and blade 

pitch angle. This paper undertakes a survey of various numerical approximation models that have been proposed for 

the power coefficient parameter for given values of tip speed ratio and blade pitch angle. Maximum power point 

curves are then simulated using MATLAB and compared for the various models for a case study variable speed 

wind turbine. Simulation results and analysis show that one of the approximation models is the most appropriate for 

the case study wind turbine. This analysis will assist in development of a comprehensive control algorithm for 

maximum power point tracking for the variable speed wind turbine. 

 

Keywords –wind turbine, power coefficient, maximum power point, tip speed ratio. 

INTRODUCTION 

Even though renewable energy is a good 

substitute for conventional sources, there is 

some skepticism associated with their 

performance and cost. Researchers have been 

working to address these concerns. A unique 

limitation of wind energy conversion systems is 

their inability to track peak power production 

efficiently at varying wind speeds. This 

has led to control algorithms referred to as 

Maximum power point (MPPT) algorithms[1]. 

MPPT involves optimizing the generator speed 

relative to the wind velocity intercepted by the 

wind turbine such that power extracted is 

maximized. MPPT methods can broadly be 

classified into those that use sensors and those 

that are sensorless. The sensorless methods track 

the maximum power point by monitoring the 

power variation [2], [3]. 

Methods that use sensors track maximum power 

point by control of rotor speed and torque to 

keep tip speed ratio at an optimal value. Tip 

speed ratio is the ratio of tip speed of rotor 

blades to the wind speed. 

Sensorless MPPT methods have poor dynamic 

characteristics because they are not usually 

sensitive to variations in wind speed. Due to the 

non-negligible inertia of the wind turbine, the 

power output changes a bit lazily compared to 

change in wind speed, this challenge is 

overcome by the methods that use sensors since 

they directly measure the wind turbine speed and 

give the control reference instantaneously. 

However these methods require the 

characteristic of the wind turbine to be known. 

Wind turbines may be variable pitch or fixed 

pitch meaning blades may or may not be able to 

rotate along their longitudinal axes [4]. For 

small wind turbines typically less than 10kW, 

the blade pitch is usually fixed to minimize 

design cost. They can also be variable or fixed 

speed. Variable speed wind energy systems have 

several advantages compared with fixed speed 

wind energy systems such as yielding maximum 

power output, developing low amount of 

mechanical stress, improving efficiency and 

power quality. 

Maximizing power output from a wind turbine 

requires maximizing the power coefficient 

for the varying wind speeds. Power coefficient is 

the ratio of the mechanical power at the turbine 

shaft to the power available in the wind, given as 

a function of tip speed ratio.  To understand the 

behavior of , numerical approximation 

models are used to simulate it for analysis. This 

paper carries out a comparison of several of 

these approximation models with the aim of 
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finding the appropriate one for a case study wind 

turbine. 

According to [5],model validation involves 

defining the model and model structure to be 

used for modeling the device under study, 

collecting recorded or measured data from the 

actual device to be modeled, simulating the 

same events/ tests as occurred / forced during 

data collection using the model and then 

comparing the simulated results to recorded/ 

measured results. 

 

WIND TURBINE MODELLING 

Dynamic modeling and simulation is required 

to determine the effectiveness of a control 

strategy before deployment of a system. 

The power extracted from the wind by a wind 

turbine rotor can be expressed as: 

 

            (1) 

 

Where  

 = air density 

R = radius of the rotor,  

v = wind speed and 

            = Power coefficient. 

 

represents the percentage of power available 

in the wind that is converted into mechanical 

power. It  is a non linear function of the tip 

speed ratio   as well as the blade pitch angle   

i.e  

             (2) 

 

Where  

 and 

  = rotation speed of the rotor.  

 

The blade pitch angle is defined as the angle 

between the plane of rotation and the blade 

cross-section chord. As earlier stated, for small 

wind turbines, the blasé pitch angle is usually 

fixed. 

A maximum for the function in equation (2) is 

known as Beltz limit.  [3] 

This is the maximum possible turbine power 

coefficient. From equation (1) above, when 

controlling the wind turbine for power output 

maximization,  is useful as it is the only 

variable and controllable parameter. Wind speed 

 is a variable but not controllable.  

There is a value of  for which  is maximum, 

therefore yielding maximum power for a given 

wind speed  . 

Because of the relationship between   

for each wind velocity, there is a turbine speed 

that gives maximum output power. 

Modelling is essential in developing a controller 

for maximum power point tracking.  

Various authors have proposed different 

numerical approximation models for the power 

coefficient parameter Cp 

and   . For a fixed pitch wind turbine as is the 

case with our case study wind turbine, is set to 

a constant value. 

 The author in [6] proposes the model given by: 

 

          (3) 

where  

 
Similarly, the author in [7] used the model 

defined by: 

          (4) 

 

where: 

  

 
 

According to the authors in [8] the  curve 

of the wind turbine can be expressed 

approximately using the following 

polynomial: 

             (5) 

Through adjusting the coefficients a1-a6 in 

the above polynomial equation (5), the 
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shape of the curve can be modified. 

For the case study wind turbine the 

appropriate coefficients are found to be: 

, , , 

    

 

SIMULATION RESULTS AND ANALYSIS 

The specifications parameters for the case study 

commercial wind turbine are given in Table 1. 

The parameters shown in Table1 were defined 

and the operating parameters set in MATLAB 

program code. 

The three numerical approximation models 

described by equations (3) to (5) were then 

simulated using MATLAB.  

The plots of interest are those on the maximum 

power point curves for various wind speeds. 

 

Case study wind 

turbine 

Rhino Rotor Wind 

Turbine  

Manufacturer PowerGen East Africa 

Ltd. 

Rated Power 1Kw at 12.5m/s 

Rotor Diameter  3.1m 

Startup wind speed 3.2m/s 

Over speed 

protection  

Mechanical tail furling 

Table1: Parameters of case study wind turbine 

 

The plots for maximum power point curves and 

 

 

 

Fig.1:  Power output vs rotor speed using 

approximation model in equation (3) 

 

From the plot of Fig. 1 it can be seen that the 

power output at the rated speed of 12.5 m/s is 

777.5W 

 

 

 

 

 

 

 

 

Fig.2 Power output vs rotor speed using 

approximation model in equation (4) 

From the plot of Fig. 2 it can be seen that the 

power output at the rated speed of 12.5 m/s is 

829.1W 

 

 

 

Fig.3 Power output vs rotor speed using 

approximation model in equation (5) 

 

From the plot of Fig. 3 it can be seen that the 

power output at the rated speed of 12.5 m/s is 

999.6W 

 

Fig.4 shows power output vs rotor speed for all 

the 3 approximation models on the same scale. 
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Fig.4. Power output vs rotor speed for all the 3 

approximation models 

 

Fig.4 shows that  the three models are 

comparable for the case study wind turbine 

although giving different maximum power 

values. 

From the results it can be seen that the different 

models give different values of maximum power 

points for the same wind speed. 

To validate their accuracy, the maximum power 

point at the rated wind speed (12.5m/s) for the 

case study wind turbine as given by the various  

 

 

 

A plot of Power coefficient  vs Tip speed 

ratio for the three models was also obtained as 

in figure 5. 

 

 

Fig.5 vs  for all the 3 approximation models. 

 

models was compared to the actual value from 

the manufacturer’s datasheet. 

 

The results are as shown in Table 2: 

 

Model 

 

Maximum power at 

12.5m/s wind 

speed(W) 

%Accuracy 

1 777.5 77.75% 

2 829.1 82.91% 

3 999.5 99.95% 

Table 2: Comparison of maximum power points 

at rated wind speed for the three models. 

From the manufacturer’s datasheet of the case 

study wind turbine, the power output at the rated 

wind speed is 1000W. 

It can be seen that at rated wind speed, 

approximation model in equation (3) has 77.77% 

accuracy in predicting the power output. 

Approximation model in equation (4) has 

82.91% accuracy while that in equation (5) has 

99.95% accuracy.  

The figure shows the maximum power 

coefficients of the three models.  Approximation 

model in equation(1) gives maximum value of 

Cp as 0.1605, model in equation (4) as 0.1712 

and that in equation (5) as 0.2063. It can be seen 

that model in equation (5) gives the highest 

value of Cp at 0.2063 

 

CONCLUSION 

For maximum power point tracking it is 

important to use a model that gives the 

maximum power for various wind speeds. 

From the analysis, it can be seen that 

approximation model described by equation (5) 

is the one that  best approximates power 

coefficient  for the case study wind turbine as 

well as giving highest power for all wind speeds 

as compared to the other models. It gives has an 

accuracy of 99.95% in giving power output at 

the rated wind speed. 

It also gives the highest value of maximum  at 

0.2063, hence giving maximum power output 

for the case study wind turbine. 

 This model will be used to develop a controller 

for maximum power point tracking for the case 

study wind turbine.   
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Abstract - Flexible AC Transmission System 
(FACTS) devices in power systems play a vital role in 
the power system performance, such as improving 
system stability, increasing system loading capability, 
reducing losses and the cost of generation. In order to 
maximize their benefits, these devices must be located 
optimally. In this paper, optimal location of SVC is 
obtained by use of two benefit factors which are 
obtained and weighted by Analytical Hierarchy 
Process (AHP). Placement of SVC is then done at the 
obtained location and Optimal Power Flow (OPF), 
voltage analysis and an estimation of the cost of 
investment recovery are performed. This proposed 
method is tested on WSCC 9-bus and modified IEEE 
30-bus test systems. Results obtained show an 
improved voltage profile and minimization of 
generation cost. 

Keywords: VAR compensation, FACTS devices, 
SVC, voltage profile. 

I. INTRODUCTION  

Transmission of reactive power results to 
increased losses in the transmission system, 
decrease in the real power transmitted, and 
changes in the voltage amplitude at the end of the 
line. It is therefore necessary to provide reactive 
power compensation, at the right location in the 
power system, in order to increase transmitted 
power, decrease losses and provide stability of 
voltage amplitude at the end of the line (Tosun, 
2012).

Traditionally, the locations for placing new VAR 
sources were either simply estimated or directly 
assumed (Wenjuan Zhang, 2007). With the 
deregulation of the electricity market, the 
traditional concepts and practices of power 
systems are changing. FACTS devices such as 
Static VAR Compensator (SVC), Thyristor 

Controlled Series Compensation (TCSC) and 
Unified Power Flow Controller (UPFC) are 
being adopted in many countries. 

FACTS devices are power electronic based 
devices which can change transmission system 
parameters like impedance, voltage and phase 
angle. This allows control of power flow in the 
network, reduction of flows in heavily loaded 
lines, lower system losses, improved stability of 
network and reduced cost of production. It is 
important to ascertain the location of these 
devices because of their significant costs (S. B. 
Bhaladhare, 2012) (Rakhmad Syafutra Lubis, 
2012).

Optimal VAR location of different devices has 
been attempted using various techniques over the 
last few years. (N.M. Tabatabaei, 2011) presents 
PSO and APSO-SA methods for ascertaining 
optimal location of FACTS devices to achieve 
minimum VAR cost while satisfying the power 
system constraints, for single and multi-type 
FACTS devices. (S. B. Bhaladhare, 2012)
discusses optimal placement of FACTS devices 
based on Voltage Stability Index (VSI) to obtain 
their location and operating parameters for 
improving voltage profile in a power system. 

Location and type of various FACTS controllers 
has also been investigated in (Rakhmad Syafutra 
Lubis, 2012) using the sensitivity of system 
loading factor method and solved with the 
nonlinear predictor-corrector primal-dual 
interior-point optimal power flow (OPF) 
algorithm. Performance evaluation of Newton-
Raphson power flow analysis method has been 
done on IEEE-30 bus system in (Amit Debnath, 
2013) to investigate effect of UPFC on the 
voltage profile.
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This paper seeks to obtain the optimal location of 
SVC by use of a real power loss minimization 
algorithm. Benefit factors are evaluated from the 
results and weighted by use of AHP. OPF is then 
done with SVC incorporation. Lastly, voltage 
analysis and comparison of savings made from 
their utilization will be done to determine if it is 
economical to invest in FACTS devices.  

This paper is organized as follows: section II 
presents SVC modelling and its optimal location, 
while problem formulation and case study are in 
section III. Simulation results and discussion are 
found in section IV and conclusion section V. 

II. FACTS DEVICES 

FACTS devices can regulate the active and 
reactive-power flow as well as system voltage 
magnitude simultaneously by their fast control 
characteristics and their continuous 
compensating capability. Series compensation 

modifies line reactance  !"  while shunt 

compensation injects reactive power which 
improves the voltage (Rakhmad Syafutra Lubis, 
2012) (J.Vivekananthan, 2013).

Static VAR Compensator (SVC) 

SVCs regulate voltages at its terminals by 
controlling the amount of reactive power injected 
into or absorbed from the power system. If the 
power systems reactive load is capacitive 
(leading), the SVC will use reactors to consume 
VARs from the system, lowering the system 
voltage. Under inductive (lagging) conditions, 
the capacitor banks are automatically switched 
in, thus providing a higher system voltage (D. 
Murali, 2010). The model is incorporated into the 
sending end as a shunt element of the 
transmission line as shown in Fig. 1.

Fig 1: Power Injection Model of SVC  

OPTIMAL LOCATION OF SVC 

Due to the high cost of FACTS devices, it is 
necessary to locate them properly in order to 
maximize their benefits. Two benefit factors 
evaluated in this paper are: 

a) Voltage Benefit Factor (VBF)  

#$%! = (!"(#$" ) % !"& )#$"  ' 100%"  "
* +                          (1)

where !"(#$") and !"&   is the voltage magnitude 

at load bus ", with and without VAR 

compensation respectively and #$" is the amount 
of VAR support in the bus. + is the number of 
load buses. 

b) Loss Benefit Factor (LBF) 

,-." = /0,& % 0,(#$")1#$"  ' 100%"  "
* +                             (2)

where 0,(#$") and 0,&  is the power transmission 
loss in the system with and without VAR 
compensation respectively (Zhu, 2009) (Jigar 
S.Sarda, 2012) (J.Vivekananthan, 2013).

Analytic Hierarchy Process (AHP)  

The AHP is a decision making approach which 
presents an objective function, criterion and 
alternatives. It evaluates trade-offs and performs 
a synthesis to arrive at a final decision (Saaty, 
2008). In this paper, the AHP technique is 
applied with the objective of identifying the 
optimal location of SVC. The criterion is VBF 
and LBF, while alternatives are the various load 
buses which are candidate sites for VAR support. 
The judgement matrix to be used (Zhu, 2009) is 
presented below:

!-." ,-."!-." 1 ½,-." 2 1

The weighting coefficients of the judgment 
matrix are computed through the sum method as 

2 = [0.667, 0.333]
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III. PROBLEM FORMULATION 

This is done in two stages: 

a) Optimal location of SVC 

Optimal location of SVC can be done using 
various objective functions as detailed in 
(Wenjuan Zhang, 2007). The approach taken in 
this paper is minimizing real power loss of the 
system while observing all system constraints. 
Mathematically, it is expressed as:

. = min(03&$$ ) = min4 5" ,67,
"=1

/!"2 + !62
% 2!"!6 cos/8"
% 86 )19                      (3)

where !" is voltage magnitude at bus "; 5" ,6 is 

conductance of line " % 6; 8" is voltage angle at 

bus " and 7, is the total number of transmission 
lines in the system.

SVC constraint: 

#:;! ,<"+ = #:;!= #:;! ,<>'                                                   (4)

where #:;!  is the reactive power injected into 
the bus by SVC. 

b) Generation cost minimization with 

SVC incorporated 

This is the conventional OPF whose objective 
function is: 

. = <"+/.(0?)1
= >"0?"2 + @"0?"7?
"=1

+ ;"                              (5)

Both objectives are subject to: 

Power balance (equality) constraints: The total 
power generated by the units must be equal to the 
sum of total load demand and total real power 
loss in the transmission lines. 

0? % 0A % |!" ||!6 ||B"6 |cosC(D"6 + 86 %6 *7 8")
= 0                                      (6)

#? %#A % |!" ||!6 ||B"6 |sinC(D"6 + 86 %6 *7 8")
= 0                                      (7) 

where 0?  is the total active power generated and 0A is the total active power demand of the 

system. #?  is the reactive power generated and #A is the reactive power demand of the system. 

Inequality constraints 

Power generating limits: each generator in 
operation has a minimum and maximum 
permissible output. 

0?" ,<"+ = 0?" = 0?" ,<>'                              (8)

#?" ,<"+ = #?" = #?" ,<>'                           (9)

Transmission line limits: this is the maximum 
power a given transmission line is capable of 
transmitting. 

:"6 = :"6  <>'       " E 6                              (10)

Voltage limits: imposed for bus voltage 
magnitudes in order to maintain the voltage 
profile. 

!" ,<"+ = !" = !" ,<>'                               (11)

(D P Kothari, 2003)

Capital cost of SVC 

The capital cost of SVC is given as: 

;:!; = 0.0003:2 % 0.3051:
+ 127.38 (F:$
/G!HI)                            (12)

where S is the operating range of device obtained 

as: : = |#2| % |#1|
#2 is the reactive power in the system after 

installing FACTS devices and #1 is the reactive 
power in the system before installing FACTS 
devices (N.M. Tabatabaei, 2011) (Kalaivani R., 
2012).
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CASE STUDY 

Optimizing process and placement of SVC has 
been tested on two systems: Western System 
Coordinating Council (WSCC) 9-bus and 
modified IEEE 30-bus system. WSCC 9-bus test 
system has 3 generators on bus 1, 2 and 3 (S. B. 
Bhaladhare, 2012). Modified IEEE 30-bus 
system has 6 generators on bus 1, 2, 5, 8, 11, and 
13 (Zhu, 2009). Generator data is found on the 
appendix. MATPOWER (v2), a toolbox of 
MATLAB, has been used for simulations.

IV. SIMULATION RESULTS 

Case 1: Optimal location of SVC 

SVC is placed at all load buses. LBFs and VBFs 
are calculated, then AHP used to determine the 
best location for SVC. The bus with the highest 
weight coefficient signifies the largest system 
benefit in terms of voltage, loss and cost of 
generation. Figure 2 shows the proposed VAR 
support sites and the corresponding weighting 
coefficients for the 9-bus system.

Fig 2: WSCC 9-bus test system

The top three sites in the WSCC 9-bus system for 
placing VAR compensation is bus 5, 8, and 6. 
Bus 5 has the highest weighting coefficient hence 
the optimal location of SVC.

Fig 3: Modified IEEE 30-bus system

The top three sites in the IEEE 30 - bus system
for placing VAR compensation is bus 30, 29 and 
26, with the optimal location being bus 30. 

Case 2: Voltage analysis 

Plot of voltage magnitude for both systems, 
without and with SVC are shown in fig 4 and 5. 

Fig 4: WSCC 9-bus system

The voltage profile has improved. Bus 5 had the 
lowest voltage magnitude of 0.969p.u., which 
rose to 1.002p.u. after SVC incorporation. 
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Fig 5: IEEE 30-bus system

Bus 30 had the lowest voltage of 0.951p.u., 
which rose to 0.985 p.u. after SVC incorporation. 

POWER SYSTEM LOSS 

The real and reactive total system losses for both 
systems are found in table 1 and 2 below, with 
and without SVC. 

Table 1: WSCC 9 bus-system

Without 
SVC

With 
SVC

Real power loss (MW) 7.437 6.86

Reactive power loss 
(MVAR)

77.63 71.63

Total system losses reduced with SVC 
incorporation for WSCC 9-bus system. 

Table 2: Modified IEEE 30-bus system

Without 
SVC

With 
SVC

Real power loss (MW) 9.251 9.569

Reactive power loss 
(MVAR)

39.2 40.02

From table 2, real and reactive power losses 
slightly increased with SVC incorporation. This 
is due to change in dispatch, whereby the 
cheapest generating unit increases real power 

production, resulting in higher power flows, 
hence losses in some lines.  

The total cost of generation in both systems is 
however reduced and savings are used as signals 
for capital cost recovery, below. 

Investment cost recovery 

Table 3: WSCC 9-bus system

Cost of generation ($/hr)

Without SVC 7805.95

With SVC 7754

Savings 51.95

Operating range is evaluated as 18 !"# and 

capital cost of SVC  !$91,835.58. With a 
utilization factor of 40%, payback period is 0.51 
years.

Table 4: modified IEEE 30-bus system 

Cost of generation ($/hr)

Without SVC 883.74

With SVC 865.56

Savings 18.18

Operating range is evaluated as 8"#$% and 

capital cost of SVC  !$16,886.58. With a 
utilization factor of 40%, payback period is 0.26 
years.

V. CONCLUSION 

In this paper, a method for optimal placement of 
SVC has been proposed for reducing the cost of 
generation in a power system. The proposed 
method is tested on the WSCC 9-bus and 
modified IEEE 30-bus test systems and results 
obtained show that SVC placement on the 
appropriate bus results in a great reduction in 
cost of generation and improves the voltage 
profile.  
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Appendix 

WSCC 9-BUS SYSTEM 

Table A1 & A2: Generator Data 

Bus. no. Generator limits

Pmax Pmin Qmax Qmin

1 250 10 300 -300

2 300 10 300 -300

3 270 10 300 -300

Bus. no. Generator cost coefficients

a b c

1 0.150 5.0 150

2 0.085 1.2 600

3 0.123 1.0 335

MODIFIED IEEE 30-BUS SYSTEM 

Table A3 & A4: Generator Data

Bus. no. Generator limits

Pmax Pmin Qmax Qmin

1 200 50 250 -20

2 80 20 100 -20

5 50 15 80 -15

8 35 10 60 -15

11 30 10 50 -10

13 40 12 60 -15

Bus. no. Generator cost coefficients

a b c

1 0.020 2.00 0

2 0.018 1.75 0

5 0.063 1.00 0

8 0.008 3.25 0

11 0.025 3.00 0

13 0.025 3.00 0
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Abstract - Dynamic voltage stability deals with the 

voltage levels and how they are affected by either 

faults or load changes within the system.Voltage 

instability has long been suspected in the voltage 

collapse and islanding of power systems. 

Identifications of operational conditions leading to 

voltage collapse is therefore critical in allowing for 

critical defensive measures by the system operator to 

avoid voltage collapse before it occurs. This paper 

examines the use of Voltage Collapse Proximity 

Indicator (VCPI) in conjunction with Artificial 

Neural Networks to predict conditions of voltage 

instability before they occur for load buses within 

the Kenya power system that can be used for online 

prediction of voltage stability within the system.

Keywords – Voltage Stability, VCPI, ANN

I. INTRODUCTION

oltage stability is the ability of a power system 

to maintain voltage magnitudes at all system 

buses within a specified margin both under 

normal operating conditions and after being 

subjected to a disturbance. Voltage instability has long 

been suspected in system wide blackouts. As a result, 

voltage stability has been studied in depth both for 

static and dynamic voltage stability. Static voltage 

stability is concerned with the system when operating

under given loading and generation conditions while 

dynamic stability is concerned with the changes in the 

system when it undergoes significant load changes or 

contingencies in lines or generators. To evaluate how 

voltage stable a bus is, the Voltage Collapse Proximity 

Indicator (VCPI) is one of the tools employed

recently.It incorporates elements of the Y-bus matrix to 

capture the network topology as well as the real and 

reactive power configurations both at the reference bus 

and within the system as a whole. The VCPI can 

however only be calculated for static conditions and in 

this paper minute load changes are used to simulate 

dynamic loading and contingency conditions.

Artificial intelligence techniques have also been 

used for a while to reduce the computation times in the 

power flow solution which is an iterative procedure. 

Artificial Neural Networks (ANN) are used to mimic 

human brain cognitive properties and can be trained to 

read patterns in related data that may be too complex to 

capture in mathematical terms. In this paper, ANNs are 

trained using data from the load flow simulations and 

the corresponding VCPI indices to give predictions of 

the corresponding voltage magnitudes to expect at each 

bus.

II. METHODOLOGY 

A. POWER FLOW PROBLEM

The power flow solution is used to determine the 

voltage magnitude and angle at each bus within the 

system as well as the real and reactive power flows and 

losses along all lines within the system for a given 

configuration of loads and generation. Using the nodal 

current equations, the current entering the ith bus of an 

n-bus system can be obtained by

At bus I, the power injected is given by

Equating the 2 equations gives

Equation (3) is a system of algebraic non-linear 

equations that is solved by iterative techniques. The 

V
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most popular is the Newton-Raphson method which 

gives fast convergence on a solution due to its quadratic 

convergence.The powerflow equations (1) and (2) are 

solved to give

J is the Jacobian matrix while the left hand side gives 

the correction vector that updates earlier values of and 

V. In this paper, the Newton Raphson is run for a 

maximum of 100 iterations to obtain a single solution 

convergence.

B. VOLTAGE STABILITY

A power system at a given operating state and subject to 

a given disturbance is voltage stableif voltages near 

loads approach post-disturbance equilibrium values[2].

Voltages of the buses within a power system are 

required to remain within 4% or 5% of the nominal bus 

voltage in line with ANSI standard C84.1. Voltage 

Stability can broadly be classified into Static Voltage

Stability and Dynamic Voltage Stability.

Static Voltage Stability evaluates the voltage 

magnitudes at all the buses in the system for a given 

loading and system configuration. The result only 

applies to that network topology and loading condition. 

Dynamic Voltage Stability is concerned with 2 aspects 

of voltage stability [1] 

i. Distance to instability – this measures how 

close the system is to being voltage unstable. 

The distance is given in terms of system 

parameters like loading, power flow across a 

critical line or reactive power reserve.

ii. Mechanism of Voltage Instability – this 

investigates what system factors contribute to 

voltage instability and what indicates that the 

system is heading towards instability.

Previous studies on Dynamic Voltage Stability have 

used singular value decomposition, multi-variable 

control theory and bifurcation analysis[3-7]. Since 

voltage stability is affected by slow acting system 

dynamics which allows for the use of many static points 

to analyse Dynamic Voltage Stability. In this paper, the 

static points are evaluated by continuously varying 

loads at a high resolution of 0.001pu and carrying out 

power flow solutions at each loading configuration.  

C. VOLTAGE COLLAPSE PROXIMITY 

INDICATOR (VCPI)

The VCPI is a relatively new indicator gaining 

popularity for Voltage Stability Studies. It can be 

calculated at each bus for each loading and contingency 

condition [8]. It is calculated at bus j as 

Where

And 

is a component of all the other loads in the system 

incorporated into the index at bus j. The VCPI is 

calculated for the load buses within the system. It has a 

value of 0 for stability and 1 for complete instability

D. ARTIFICIAL NEURAL NETWORKS 

(ANN)

These have previously been used for identifying weak 

buses within a system [9]. They are used to model 

complex relationships that are difficult to model with 

mathematical equations or for which relationships exist 

but are unknown. They mimic the human brain.An 

extremely important and human characteristic of ANN 

is their adaptive nature, where learning by experience 

replaces programming in solving problems. ANNs learn 

the pattern on which they are trained. An artificial 

neuron consist of synapses which apply weights to the 

inputs, an adder(+) that sums the weighted inputs and 

an activation function g(v) that maps the sum to the 

output function of the neuron as shown in Fig. 1. ANNs 

are formed by arranging neurons in layers. The input 

layer has input neurons where each input into the 

network feeds into each of the neurons in the input 

layer. The input layer’s output is fed into the middle 

layer containing several neurons. The middle layer’s 

output is then fed into the output layer which normally 

has a single neuron with a single output. Varying the 
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number of neurons in the middle layer affects the 

accuracy of the whole ANN.

 

Fig.1: Artificial Neural Network

III. RESULTS

The 9-bus WSCC system was used to test the accuracy 

of the VCPI calculations using static load increments. 

The loading on Bus 5 was increased in steps of 0.001pu 

while maintaining pf until when the power flow 

solution did not converge. This occurred at 2.971pu 

loading and the corresponding plot of the VCPI and 

voltage magnitude was as in Fig 2.  

 

Fig.2 : Bus 5 V & L (WSCC 9-bus system)

This result matched previous studies using the VCPI 

[10] with the collapse point for Bus 5 occurring at 

2.971pu (371+j149MVA).

Next the IEEE 14-bus system was studied. This 

involved iterations for the ideal case and with n-1

contingency. The contingencies were selected as line 

contingences and for transformers the tap settings were 

varied between 90% and 110% of the nominal tap 

setting.  At each iteration, 100 random loading 

configurations of between 30% and 200% at each load 

bus without maintaining pf. Within each of these 

iterations, a load flow study was run with the single 

contingency and load configuration. From the load 

flow, the voltage magnitudes, real and reactive power at 

each bus and for the whole system were recorded. Also,

the L-index was calculated for that configuration. This 

data was then used to train an ANN with 100 neurons in 

the hidden layer. Previous studies [11] found bus 14 is 

the weakest bus in the system. A comparison of the 

VCPI calculated from the Power Flow and that 

predicted by the ANN is shown in Table 2 

All Values in pu
n-1 

P14 Q14 Ptot Qtot Method VCPI

1 1 1 1 0
Calculated 0.0279

ANN 0.0259

0.98 0.71 0.91 0.90 2
Calculated 0.0303

ANN 0.0277 

1.15 1.45 0.99 1.11 10
Calculated 0.0394

ANN 0.0263

0.55 0.8 1.04 0.87 18
Calculated 0.0466

ANN 0.0449

1.31 1.44 1.07 1.16 18
Calculated 0.0207

ANN 0.0090

Table 1: VCPI for IEEE 14 bus System

From Table 1, it is clear that as the total system load 

increases, the VCPI value increases. Similarly, 

increased loading on bus 14 increases the VCPI value, 

indicating increased instability. The ANN values also 

follow the power flow calculated values. Since the

VCPI varies from 0-1, the relative error is very 

minimal.

The same algorithm was then used on the 37-bus 

Kenyan system. Previous studies [12] identified buses 

10,22,30,31 as the weakest buses in the system. The 

VCPI for the 3 buses using power flow and ANNs are 

shown in tables 2, 3 and 4.

All Values in pu
n-1 

P10 Q10 Ptot Qtot Method VCPI

1 1 1 1 0
Calculated 0.007928

ANN 0.007935 

1.04 1.50 0.86 1.08 20
Calculated 0.008729 

ANN 0.008658 

1.40 1.15 1.02 0.86 20
Calculated 0.011047 

ANN 0.011137

0.57 0.53 1.01 1.05 1
Calculated 0.004443

ANN 0.004390

0.71 0.73 0.88 0.91 33
Calculated 0.005663 

ANN 0.005570 

Table 2: VCPI Values for Kenyan System Bus 10

The VCPI values in Table 2 indicate that in all the 

randomly selected cases the bus is stable even with the 

selected single contingencies. The ANN generated 

values also closely follow the power flow values to a 

very great extent. A comparison of a contingency on 

line 20 shows bus 10 stability drops with a relatively 

small increase in the total system real power loading 

even when the reactive power demand at the bus is 

reduced. This reinforces its classification as a weak bus.
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