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Abstract: This paper uses the concept of the 

continuation power flow analysis used in voltage stability 
analysis for control the power in large systems. It uses the P-
V curves to find the knee point of a certain bus. A neuro-
fuzzy model of an induction motor load is used to represent 
an industrial load. In the subsequent predictor-corrector 
stages, the induction motors are increased to depict 
increment in loading. Different motor ratings are used in the 
investigations. The process starts at some base values of the 
system and leading to the critical point. Further the reduced 
Jacobian is used to determine the optimum location for 
capacitor to affect maximum voltage improvement in total 
over a range of operating points. In case study, illustrative 
examples with the IEEE 30 bus system are shown.     

Key Words: Continuation Load Flow, Induction Motors, 
Voltage Stability  

1. INTRODUCTION 

As power systems become more complex and heavily 
loaded, voltage stability becomes an increasing serious problem.   
Voltage problems have been a subject of great concern during 
planning and operation of power systems due to the significant 
number of serious failures believed to have been caused by this 
phenomenon.   It is therefore necessary to develop Voltage 
Stability Analysis (VSA) tools in today’s Energy Management 
Systems (EMS). [1] 

The continuation power flow [2], as known, is a useful tool 
to plot the entire P-V curve.  The continuation power flow uses a 
predictor-corrector scheme [2] to solve the set of load flow 
equations which are reformulated to accommodate a load 
parameter λ which denotes the increase in load from the base 
point. 

In [3], the conventional load flow algorithm has been 
modified to incorporate a neuro fuzzy model of an induction 
motor load (IM), which updates the reactive power and slip 

during each iteration. In this modification the reactive power of 
the IM load which is a function of its voltage is accurately 
estimated, which is not the case in the conventional load flow 
solution [4].  It is revealed in [5] that modeling industrial loads 
as motors allows better analysis of the system behavior and 
improves the ability to reveal voltage stability problems. 

Reactive power compensation with components like 
capacitors is a trend popular in power systems today so as to 
ensure the continuous system reliability, given the regular 
overloading and the resulting lack of reactive power supply and 
voltage collapse. The use of these components however, is not a 
subject of free choice since these components are expensive. In 
[6] the reduced Jacobian is derived for V-Q sensitivity analysis. 
The technique is extended in [1] by implementing a simple 
computation on the elements of the reduced Jacobian to find the 
suitable bus for capacitor placement.  

This paper demonstrates how the neuro fuzzy model of the 
induction motor can be incorporated in the continuation load 
flow where the singularity in the Jacobian can be avoided by 
slightly reformulating the power flow equations and applying a 
locally parameterized continuation technique [2]. Further, 
different induction motor ratings are used to plot the PV and QV 
curves. The results indicate that though the PV curves have 
almost similar maximum loading, but the QV curves are 
different for motor ratings. Specifically, large induction motors 
consume less reactive power at base values, but as loading 
continues, the consumption increases drastically leading to 
stressed buses in terms of voltage stability. During the 
continuation power flow, the reduced Jacobian is formulated and 
the bus numbers deemed best for capacitor placement at the 
operating points are determined. 

The paper is organized as follows. In section 2, we discuss 
the Mathematical Formulation, section 3, we conducted a case 
study using the IEEE 30 bus system; section 4, we outline the 
conclusions. 



2. MATHEMATICAL FORMULATION  
A. REFORMULATION OF THE POWER FLOW 

EQUATIONS 

  In order to apply a locally parameterized continuation 
technique to the power flow problem, a load parameter must be 
inserted into the equations [2].   While there are many ways this 
could be done, only a simple example using a constant power 
load model will be considered here. 

First let λ represent the load parameter such that 

0 criticalλ λ≤ ≤                                 (1) 

Where 0=λ  corresponds to the base load and 

criticalλλ =  corresponds to the critical load.   We desire to 
incorporate λ into 
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for each bus i of an n bus system, where the subscripts L, 
G, and T denote bus load, generation and injection respectively.   
The voltages at buses i and j are iiV δ∠  and jjV δ∠
respectively and iij vy ∠ is the (i , j)th element of YBUS.  

To simulate a load change, the PLi and QLi terms must be 
modified.   This can be done by breaking each term into two 
components.   One component will correspond to the original 
load at bus i and the other component will represent a load 
change brought about by a change in the load parameterλ . 

Thus,  

0 ( cos )Li i Li base iP P K Sλ ψ∆= +                                         (4) 

0 ( sin )Li Li Li base iQ Q K Sλ ψ∆= +               (5) 

Where the following definitions are made; 

PLi0, QLi0 – original load at bus i, active and  reactive 
respectively. 

KLi           - multiplier to designate the rate of load change 
at bus i as λ changes. 

Ψi            - power factor angle of load change at bus i. 

S∆base       - a given quantity of apparent power which is 
chosen to provide appropriate scaling of λ. 

 For the induction motor load, LiP  is the scheduled load 
out of which the number of induction motors to be aggregated is 
estimated.  This is done by dividing the scheduled power with 
the induction motor rating being investigated. The aggregation is 
done using equations detailed in [7]. 

      In addition, the active power generation term can 
modified to  

0 (1 )Gi Gi GiP P Kλ= +                     (7) 

where PGi is the active generation at bus i in the base case 
and KGi is a constant used to specify the rate of change in 
generation as λ varies. 

     If these new expressions are substituted into the power 
flow equations, the result is  

0 00 (1 ) ( )Gi KGi Li Li base i TiP K P K S vod Pλ λ ψ∆= + − − −  (8) 

0 00 ( sin )Gi Li Li base i TiQ Q K S Qλ ψ∆= − − −            (9) 

     Notice that values of KLi, KGi, and ψi can be uniquely 
specified for every bus in the system.   This allows for a very 
specific variation of load and generation as λ changes. 

B  NEURO-FUZZY MODEL OF AN INDUCTION 
MOTOR LOAD  

To get neuro-fuzzy model of an induction motor load, the 
power balance equation (6) which is non-linear is solved to get 
the operating slip at each voltage.  

elect mech =0P P−                              (6) 

The operating slip is used to calculate the active and 
reactive power consumed at the load bus at each voltage. The 
Artificial Neuro Fuzzy Inference System is then used to map 
both the active and reactive power at operating slips to the 
respective voltages. The algorithm for creating the neuro-fuzzy 
model of the induction motor as detailed in [6] is summarized in 
Fig. A1 in the appendix. 

C. THE APPLICATION OF A CONTINUATION 
ALGORITHM 

      The method of continuation power flow [2,6] is dealt 
with in brief here. The power flow equations for a particular bus 
i were reformulated to contain a load parameter λ.   The next 
step is to apply a continuation algorithm to the system of 
reformulated power flow equations.   If F is used to denote the 
whole set of equations, the problem can be expressed as   

( , , ) 0F V λ∂ = , 0 criticalλ λ≤ ≤            (10)      

where δ represents the vector of bus voltage angles and V 
represents the vector of bus voltage magnitudes.   As mentioned, 



the base case solution (δo, Vo, λo) is known via a conventional 
power flow and the solution path is being sought over a range of 
λ.   In general, the dimensions of F will 2n1 + n2, where n1 and 
n2 are the number of P-Q and P-V buses respectively.  

      To solve the problem, the continuation algorithm starts 
from a known solution and uses a predictor-corrector scheme to 
find subsequent solutions at different load levels.   While the 
corrector is nothing more than a slightly modified Newton-
Raphson power flow, the predictor is quite unique from anything 
found in a conventional power flow and deserves detailed 
attention. 

      Once a base solution has been found (λ = 0), a 
prediction of the next solution can be made by taking an 
appropriately sized step in a direction tangent to the solution 
path.   Thus, the first task in the predictor process is to calculate 
the tangent vector.   This tangent calculation is derived by first 
taking the derivative of both sides of the power flow equations. 

[ ( , , )] 0g yd F V F d F dV F dλδ λ δ λ= + + =            (11) 
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On the left side of this equation is a matrix of partial 
derivatives multiplied by a vector of differentials.   The former 
is the conventional load flow Jacobian augmented by one 
column (Fλ), while the latter is the tangent vector being sought.   
There is, however, an important barrier to overcome before a 
unique solution can be found for the tangent vector.   The 
problem arises from the fact that one additional unknown was 
added when λ was inserted into the power flow equations, but 
the number of equations remained unchanged.   Thus, one more 
equation is needed. 

     This problem can be solved by choosing a non-zero 
magnitude (say one) for one of the components of the tangent 
vector.   In other words, if t is used to denote the tangent vector; 
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Where ek is an appropriately dimensioned row vector with 
all elements equal to zero except the kth, which equals one.   If 
the index k is chosen correctly, letting tk = ±1 imposes a non-
zero norm on the tangent vector and guarantees that the 
augmented Jacobian will be non-singular at the critical point.   
Whether +1 or -1 is used depends on how the kth state variable is 
changing as the solution path is being traced.   If it is increasing, 
a +1 should be used and if it decreasing a -1 should be used.   To 
know more about the state variables, refer to [2].   A method for 
choosing k and the sign of tk will be presented later in the paper. 

     Once the tangent vector has been found by solving, the 
prediction can be made as follows: 
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Where “*” denotes the predicted solution for a subsequent 
value of λ (loading) and σ is a scalar that designates the step 
size.   The step size should be chosen so that the predicted 
solution is within the radius of convergence of the corrector.    

D. THE REDUCED JACOBIAN TECHNIQUE 

The technique implements a simple computation on the 
elements of the reduced Jacobian to find the suitable bus for 
capacitor placement as seen in the later section. The reduced 
Jacobian [6] is formulated from the Jacobian of the load flow. A 
brief description of the formulation of the reduced Jacobian is 
given before proceeding further. 

Equation 3 gives the known matrix model of the load flow. 

1 2

3 4

J JP
J JQ V

∆ ∆Θ⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥∆ ∆⎣ ⎦ ⎣ ⎦⎣ ⎦

          (16) 

P and Q are the active and reactive power injections, 

V and θ are the state variable vectors, namely voltage 
magnitude and bus angle, respectively, 

∆P is the difference in active power injection, ∆Q is the 
difference in reactive power injection, 

∆θ is the change in bus angle, ∆V is the change in bus 
voltage magnitude, 

The reduced Jacobian used in this technique assumes that 
change in active load i.e. ∆P = 0. Substituting this in (16), we 
get 

1 2 0J J V∆Θ+ ∆ =            (17) 

3 4J J V Q∆Θ+ ∆ = ∆                          (18) 



Putting ∆θ from (17) in (18), we get 
1

4 3 1 2( )Q J J J J V−∆ = − ∆           (19) 

RQ J V∆ = ∆             (20) 

1
RV J Q−∆ = ∆                           (21) 

where JR is reduced Jacobian. 

  The reduced Jacobian JR gives a relationship describing 
∆Q in terms of ∆V [1,6]. The inverse describes ∆V in terms of 
∆Q. The elements in each column of the inverse matrix  can 
be made to represent the change in voltage of every load bus for 
a given injection of reactive power into the bus corresponding to 
that column. The concept can be explained using a sample 
matrix like the one in (22) which shows  as a (3 X 3) matrix. 

11A , 21A , 31A  represent partial derivatives of voltages of 
load buses 1, 2 and 3 of the system with respect to reactive 
power at load bus i, 

∆Q represents the vector of change in reactive power 
modeled by a fixed amount of reactive power injection, ∆V 
represents the vector of change in voltage. 

This implies that for studying the change in voltage ∆V as 
a result of the reactive power injection into load buses separately 
or individually, the corresponding element of ∆Q, say ∆Qi alone 
must be made 1 p.u. and the others 0. Upon implementing this, 
the corresponding column i in 1

RJ −  directly gives ∆V. Thus one 
needs to only study the elements of the particular column i of the 
reduced Jacobian to get the change in voltage as an effect of 1 
p.u. reactive power injection at that bus i. 

1 1

2 2

3 3

i

i

i

A V
A V
A V

= ∆ ⎫
⎪= ∆ ⎬
⎪= ∆ ⎭

           (23) 

The sum of the elements of that column i of 1
RJ −  further 

gives the total improvement of system voltage ∆Vtotali as an 
effect of the injection at the bus i. This is shown in (24). 

1 2 3 ii i i totalA A A V+ + = ∆           (24) 

On comparison of the sums of all individual columns of  
1

RJ − the bus corresponding to the column i which yields 
maximum ∆Vtotali is determined as the bus required. 

{ }1 2 3
: max , ,

ii total total total totalbus V V V V∆ = ∆ ∆ ∆         (25) 

corresponding to the matrix given in (22). 

busi is not the  bus in the system but the  load bus in 
the system as the buses involved in the analysis are only load 
buses.  

It should be noted that the term ∆Voverall depicts the total 
improvement in system voltage where as the individual change 
in the bus voltage information come with the individual 
elements of  1

RJ − . 

3. CASE STUDY – IEEE 30 BUS SYSTEM 

3.1 System model 

We used the IEEE 30 bus system shown in Fig. A2 in the 
Appendix, for the case study. The load bus data and line data are 
given in Table A1 and A2 respectively in the Appendix.  

3.2 Simulation results and discussion 

3.2.1 The Modified Continuation Load Flow 

The continuation load flow was carried out using the IEEE 
30 bus system. The algorithm was based on the equations 
formulated in section 2. Bus 26 was selected as the industrial 
load whose induction motors were increased to depict increment 
in loading. Based on [7] the aggregate motor model and 
parameters were obtained from individual motors whose 
parameters are shown in Table A3 as found in [8,9].  

The number of induction motors to be aggregated was 
calculated from the scheduled active power at the predicted 
operating point at each step of the continuation load flow. Based 
on the aggregate motor parameters obtained, the IM load was 
then modeled using Artificial Neuro Fuzzy inference system as 
described in section 2 using the algorithm in Fig A1. The Neuro 
fuzzy model of the induction motor was then used in the 
predictor-corrector stages of the solution. This process was 
conducted until all the operating points were calculated. The 
results with different motor ratings is shown in figures 1 and 2. 
Figure 1 shows the PV curves for the industrial load, while 
figure 2 shows the QV curves for the same load bus. 

 
Figure 1. PV curve for bus 26 with different induction 

motor ratings 



 
Figure 2. QV curve for bus 26 with different induction 

motor ratings 

3.2.2 Optimal Capacitor Bank Placement 

Based on the reduced Jacobian technique the optimal bus 
to place a capacitor bank was determined. In order to achieve 
these, the following extension was adopted [1]:  

• Obtain subsequent operating points with 
continuation power flow. 

• Obtain the matrix JR and its inverse from the 
Jacobian of this operating point. 

• Perform the same computations as discussed 
in the previous section and obtain the bus location. 

• Repeat the previous steps for points 
consequent enough to cover a continuous range of 
operating points upto the maximum loading point.  

Using the above the following results where 
achieved as shown in figure 3. 

 
Figure 3. Optimal capacitor bank placement over operating 
points range 

4. CONCLUSIONS 

The modified continuation load flow with an neuro fuzzy 
induction motor clear shows that though the PV curves have 
almost similar maximum operating points, the QV curves are 
significantly different for different motors.  

The actual situation with an induction motor load indicated 
that larger motors operate at low slips in normal rated 
operations, and hence consume less reactive power. But as the 
operating points move towards the critical loading and lower 
voltages, large motors draw more reactive power and hence pose 
as a greater threat to voltage stability of a system compared to 
their smaller counter parts. Thus depending on what kind of 
motor ratings are connected to a particular industrial load, the 
voltage stability risk is different. The smoothness of the PV 
curve is distorted when large motors are added to depict 
increment in loading.  

The smoothness of the PV curve is distorted when large 
motors are added to depict increment in loading. This is because 
while in the normal continuation load flow, load increment is 
performed in small steps, in this modified algorithm, the 
increment is depicted by the individual horse power ratings of 
the induction motors being aggregated. Smaller increments lead 
to a smooth curve, while the large motor ratings are bound to 
distort that smoothness. 

The reduced Jacobian technique successfully allocated the 
optimal bus for capacitor placement at each of the operating 
points plotted by the continuation power flow. This serves as a 
picture to let know the bus location fit enough for optimum 
voltage recovery for a particular operating point given a 
particular industrial load. 
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APPENDIX 
 

Aggregate Motor
Parameters for Bus i

Vm=1.25*Vrated

Vm>=Vm_critical

Solve the non-linear  Power
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s(Vm)=soperating

Calculate Qm=f{s(Vm)} &
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load bus
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Figure A1: Algorithm for creating the neuro-fuzzy model of the induction motor 

 

 
Figure A2  : IEEE 30-bus system 
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Table A1: IEEE 30 Bus system Load Bus Data 

Bus No 

Load 

MW MVAr 

2 21.7 12.7 

3 2.4 1.2 

4 7.6 1.6 

5 94.2 19 

7 22.8 10.9 

8 30 30 

10 5.8 2 

12 11.2 7.5 

14 6.2 1.6 

15 8.2 2.5 

16 3.5 1.8 

17 9 5.8 

18 3.2 0.9 

19 9.5 3.4 

20 2.2 0.7 

21 17.5 11.2 

23 3.2 1.6 

24 8.7 6.7 

26 3.5 2.3 

29 2.4 0.9 

30 10.6 1.9 
 

Table A2: IEEE 30 Bus system Line Data 
Bus 
No 

Bus 
No R X B/2 Transformer 

tap setting     pu pu pu 

1 3 0.0452 0.1852 0.0204 1 

2 4 0.057 0.1737 0.0184 1 

3 4 0.0132 0.0379 0.0042 1 

2 5 0.0472 0.1983 0.0209 1 

2 6 0.0581 0.1763 0.0187 1 

4 6 0.0119 0.0414 0.0045 1 

5 7 0.046 0.116 0.0102 1 

6 7 0.0267 0.082 0.0085 1 

6 8 0.012 0.042 0.0045 1 

6 9 0 0.208 0 0.978 

6 10 0 0.556 0 0.969 



Bus 
No 

Bus 
No R X B/2 

Transformer 
tap setting 

9 11 0 0.208 0 1 

9 10 0 0.11 0 1 

4 12 0 0.256 0 0.932 

12 13 0 0.14 0 1 

12 14 0.1231 0.2559 0 1 

12 15 0.0662 0.1304 0 1 

12 16 0.0945 0.1987 0 1 

15 18 0.1073 0.2185 0 1 

18 19 0.0639 0.1292 0 1 

19 20 0.034 0.068 0 1 

10 20 0.0936 0.209 0 1 

10 17 0.0324 0.0845 0 1 

10 21 0.0348 0.0749 0 1 

10 22 0.0727 0.1499 0 1 

21 22 0.0116 0.0236 0 1 

15 23 0.1 0.202 0 1 

22 24 0.115 0.179 0 1 

23 24 0.132 0.27 0 1 

24 25 0.1885 0.3292 0 1 

25 26 0.2544 0.38 0 1 

25 27 0.1093 0.2087 0 1 

28 27 0 0.396 0 0.968 

27 29 0.2198 0.4153 0 1 

27 30 0.3202 0.6027 0 1 

29 30 0.2399 0.4533 0 1 

8 28 0.0636 0.2 0.0214 1 

6 28 0.0169 0.0599 0.065 1 

14 15 0.221 0.1997 0 1 

16 17 0.0824 0.1923 0 1 

Table A3. Induction motor parameters based on individual Horse Powers (HP) (f=60Hz) 

HP Rs Rr Xs Xr Xm 
25 0.0219 0.0472 0.0498 0.0498 1.9504 
100 0.0109 0.0472 0.0532 0.0532 2.5121 
250 0.0241 0.0141 0.0864 0.864 3.0263 

1000 0.0158 0.0104 0.0851 0.0851 7.6343 
2250 0.0092 0.0071 0.0718 0.0718 4.1388 

 


