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Abstract 

Dynamic voltage stability deals with the voltage levels and how they’re affected by either faults or load 

changes within the system. Voltage instability has long been suspected in the voltage collapse and islanding 

of power systems. Identifications of operational conditions leading to voltage collapse is therefore critical in 

allowing for critical defensive measures by the system operator to avoid voltage collapse before it occurs. 

This paper examines the use of Voltage Collapse Proximity Indicator (VCPI) in conjunction with Artificial 

Neural Networks to predict conditions of voltage instability before they occur for load buses within the 

Kenya power system that can be used for online prediction of voltage stability within the system. The results 

show the validation of the VCPI index as an indicator of voltage stability when compared to previous studies 

on both the IEEE 9-bus system and IEEE 14-bus system and as an indicator of the point of voltage collapse. 

The application of Artificial Neural Networks to map the relationship between the power demand at a bus, 

total power demand in the system and the VCPI index to the Kenyan system shows a high level of accuracy 

leading to the conclusion that an online VCPI index prediction using an ANN can be used to predict voltage 

stability in the Kenya power system. 

 

Keywords: Voltage Stability, VCPI, ANN 

 

1. INTRODUCTION 

A power system at a given operating state and subject to a given disturbance is voltage stable if voltages 

near loads approach post-disturbance equilibrium values (IEEE Catalog, 2002). Voltages of the buses within 

a power system are required to remain within 4% or 5% of the nominal bus voltage in line with ANSI 

standard C84.1. Voltage Stability can broadly be classified into Static Voltage Stability and Dynamic 

Voltage Stability.  Static Voltage Stability evaluates the voltage magnitudes at all the buses in the system for 
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a given loading and system configuration. The result only applies to that network topology and loading 

condition. Dynamic Voltage Stability is concerned with 2 aspects of voltage stability (P. Kundur, 2004) 

i. Distance to instability – this measures how close the system is to being voltage unstable. The 

distance is given in terms of system parameters like loading, power flow across a critical line or 

reactive power reserve. 

ii. Mechanism of Voltage Instability – this investigates what system factors contribute to voltage 

instability and what indicates that the system is heading towards instability. 

Previous studies on Dynamic Voltage Stability have used singular value decomposition, multi-variable 

control theory and bifurcation analysis. (L. Cai, and I. Erlich, 2007) used singular value decomposition in 

the evaluation of dynamic voltage stability on the IEEE 9-bus system. (B. N. Soni, 2011) employed 

bifurcation analysis while (K. Ioannis and O. Konstadinos, 2006) used multi-variable analysis in dynamic 

voltage stability analysis.Since voltage stability is affected by slow acting system dynamics which allows for 

the use of many static points to analyze Dynamic Voltage Stability. 

 

2. METHODOLOGY 

To evaluate how voltage-stable a bus is, the Voltage Collapse Proximity Indicator (VCPI) is one of the 

tools employed recently. It incorporates elements of the Y-bus matrix to capture the network topology as 

well as the real and reactive power configurations both at the reference bus and within the system as a 

whole. The VCPI can be calculated at each bus for each loading and contingency condition (G. M. Haung 

and N. Kumar, 2002). It is calculated at bus j as  
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Where  0��  −   �#$����=� #��&�� ���#��� "" ��()**  is a component of all the other loads in the system incorporated into the index at bus ". The VCPI 

is calculated for the load buses within the system. It has a value of 0 for stability and 1 for complete 

instability. The VCPI can however only be calculated for static conditions and in this paper minute load 

changes are used to simulate dynamic loading and contingency conditions. 

Artificial intelligence techniques have also been used for a while to reduce the computation times in the 

power flow solution which is an iterative procedure. Artificial Neural Networks (ANN) are used to mimic 

human brain cognitive properties and can be trained to read patterns in related data that may be too complex 

to capture in mathematical terms. They have previously been used for identifying weak buses within a 

system (Muriithi C. M et al, 2009). ANNs learn the pattern on which they are trained.  An artificial neuron 

consist of synapses which apply weights to the inputs, an adder that sums the weighted inputs and an 
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activation function that maps the sum to the output function of the neuron. ANNs are formed by arranging 

neurons in layers.  

In this research, we aim to develop an algorithm for training an Artificial Neural Network using 

calculated VCPI index values and corresponding real and reactive power values. The algorithm is first 

validated on IEEE test systems (9-bus and 14-bus) before being applied to the Kenya power system.  

The algorithm involved calculation of a power flow solution for the ideal system then increasing the load 

in steps of 0.001pu while maintaining power factor. At each load configuration, the load flow solution is 

obtained using the Newton Raphson iteration method with a 100 iterations limit and the corresponding 

voltage magnitude and VCPI index is calculated for the bus in question. The loading is increased until the 

load flow solution fails to converge, with the value of the VCPI index, voltage magnitude and real and 

reactive power at each load configuration recorded. The values of the powers and VCPI index are then used 

to train an ANN. Some of the power values are then used to evaluate the VCPI index using the ANN and the 

output of the ANN compared with the calculated values from the load flow to evaluate the accuracy of the 

ANN in predicting the VCPI values. This is first done on the IEEE 9-bus system and 14-bus systems to 

validate the algorithm before its used on the Kenya Power System. 

 

3. RESULTS AND ANALYSIS 

The 9-bus WSCC system was used to test the accuracy of the VCPI calculations using static load 

increments. The loading on Bus 5 was increased in steps of 0.001pu while maintaining pf until when the 

power flow solution did not converge. This occurred at 2.971pu loading and the corresponding plot of the 

VCPI and voltage magnitude was as in Fig 1. 

 
Fig. 1 : Bus 5 V & L (WSCC 9-bus system) 

 

This result matched previous studies using the VCPI (I. Kumarswamy et al, 2012) with the collapse point 

for Bus 5 occurring at 2.971pu (371+j149MVA). 

Next the IEEE 14-bus system was studied. This involved iterations for the ideal case and with n-1 

contingency. The contingencies were selected as line contingences and for transformers the tap settings were 

varied between 90% and 110% of the nominal tap setting.  At each iteration, 100 random loading 

configurations of between 30% and 200% at each load bus without maintaining pf. Within each of 

theseiterations, a load flow study was run with the single contingency and load configuration. From the 
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loadflow, the voltage magnitudes, real and reactive power at each bus and for the whole system were 

recorded. Also, the L-index was calculated for that configuration. This data was then used to train an ANN 

with 100 neurons in the hidden layer. Previous studies (G. Balamurugan and P. Aravindhababu, 2010) found 

bus 14 is the weakest bus in the system. A comparison of the VCPI calculated from the Power Flow and that 

predicted by the ANN is shown in Table 1 

 

 

All Values in pu 
n-1 

  

P14 Q14 Ptot Qtot Method VCPI 

1 1 1 1 0 
Calculated 0.0279 

ANN 0.0259 

0.98 0.71 0.91 0.90 2 
Calculated 0.0303 

ANN 0.0277 

1.15 1.45 0.99 1.11 10 
Calculated 0.0394 

ANN 0.0263 

0.55 0.8 1.04 0.87 18 
Calculated 0.0466 

ANN 0.0449 

1.31 1.44 1.07 1.16 18 
Calculated 0.0207 

ANN 0.0090 

 

Table 1: VCPI for IEEE 14 bus System 

 

From Table 1, it is clear that as the total system load increases, the VCPI value increases. Similarly, 

increased loading on bus 14 increases the VCPI value, indicating increased instability. The ANN values also 

follow the power flow calculated values. Since the VCPI varies from 0-1, the relative error is very minimal. 

The same algorithm was then used on the 37-bus Kenyan system. Previous studies (C. Muriithi and S. 

Njoroge, 2010) identified buses 10,22,30,31 as the weakest buses in the system. The VCPI for the 3 buses 

using power flow and ANNs are shown in tables 2, 3 and 4. 

 

All Values in pu 
n-1   

P10 Q10 Ptot Qtot Method VCPI 

1 1 1 1 0 
Calculated 0.007928 

ANN 0.007935 

1.04 1.50 0.86 1.08 20 
Calculated 0.008729 

ANN 0.008658 

1.40 1.15 1.02 0.86 20 
Calculated 0.011047 

ANN 0.011137 

0.57 0.53 1.01 1.05 1 
Calculated 0.004443 

ANN 0.004390 

0.71 0.73 0.88 0.91 33 
Calculated 0.005663 

ANN 0.005570 

 

Table 2: VCPI Values for Kenyan System Bus 10 
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The VCPI values in Table 2 indicate that in all the randomly selected cases the bus is stable even with the 

selected single contingencies. The ANN generated values also closely follow the power flow values to a 

very great extent. A comparison of a contingency on line 20 shows bus 10 stability drops with a relatively 

small increase in the total system real power loading even when the reactive power demand at the bus is 

reduced. This reinforces its classification as a weak bus. 

 

All Values in pu 
n-1   

P30 Q30 Ptot Qtot Method VCPI 

1 1 1 1 0 
Calculated 0.0059142 

ANN 0.0059142 

0.76 1.13 0.81 0.97 8 
Calculated 0.0049734 

ANN 0.0049744 

0.95 1.05 1.19 0.94 34 
Calculated 0.0057342 

ANN 0.005734 

0.97 0.80 1.06 0.84 34 
Calculated 0.005555 

ANN 0.005555 

0.90 1.09 1.09 1.18 21 
Calculated 0.005548 

ANN 0.0055493 

 

Table 3:VCPI Values for Kenyan System Bus 30 

 

From Table 3, a contingency on line 34 with 2 separate values of loading on bus 30 show slight drop in the 

stability of bus 30 with a similar slight increase in reactive power. This shows it is a weak bus though it 

doesn’t evaluate the maximum reactive power the bus can support without voltage collapse. The VCPI 

values from the ANN are almost identical to the ones from the power flow. 

 

All Values in pu 
n-1 

    

P22 Q22 Ptot Qtot Method VCPI 

1 1 1 1 0 

Calculated 0.112534 

ANN 0.112534 

0.00 0.00 1.16 0.94 11 

Calculated 0.112534 

ANN 0.112534 

0.00 0.00 0.99 0.89 11 

Calculated 0.112534 

ANN 0.112534 

0.00 0.00 0.92 0.73 7 

Calculated 0.112534 

ANN 0.112534 

0.00 0.00 1.01 0.91 33 

Calculated 0.112534 

ANN 0.112534 

 

Table 4: VCPI Values for Kenyan System Bus 22 

 

Table 4 shows the unique case of bus 22 which is a node in the system without a direct load. The VCPI 

values for both the ANN and the power flow are identical. The stability index doesn’t vary with the change 

in total system demand showing the sensitivity of the VCPI index to the load on a bus. This case is similar to 

bus 31 which is also a node.  
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A simulation of the VCPI using the load flow for buses 10 and 30 was done with increasing loading till the 

voltage got to 0.95pu. It showed the VCPI being 0.02292 at 267% loading for bus 10 single loading (Fig. 2) 

and 0.04975 at 769% loading for bus 30 single loading (Fig. 3). While the loading may seem extreme, the 

buses are increasingly loaded alone while the rest of the system is maintained at the nominal values without 

any contingency. This shows the sensitivity of the VCPI index to the voltage magnitude of the buses. 

 
Fig. 2: VCPI for Bus 10 Kenyan System 

 

 
 

Fig. 3: VCPI for Bus 30 Kenyan System 
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4. CONCLUSION 

From the results, it has been shown that the VCPI index can be used as an accurate measure of voltage 

stability. The relationship between the VCPI values generated by the ANN and the actual values generated 

by carrying out load flows shows that ANNs can be trained for a bus which can then give a real time 

approximation of the stability of the bus using only 4 power measurements that are easy to read using a 

SCADA system which can lead to an on-line estimation of the stability at all the buses within the system 

using the VCPI. The VCPI for the weak buses within the Kenya Power system were also evaluated and the 

ANN values for VCPI found to very accurately track the actual values calculated using the power flow. 

A major short coming of the VCPI is that while it may indicate increasing instability, it doesn’t indicate the 

distance to instability. This is an area that can be studied further. 
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Appendix 1 : Kenyan Power System 
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