http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Jownal 9 (7): 1336-1344, 2010
ISSN 1812-5638
© 2010 Asian Network for Scientific Information

A Survey of Business Process Comnplexity Metrics

123G M. Muketha, 'A A A. Ghani, M H. Selamat and 'R. Atan
"Department of Information Systems,

Faculty of Computer Science and Information Technology,
University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
*Department of Computer Science,

Faculty of Science, Masinde Muliro Umiversity of Science and Technology,
P.O. Box 190-50100 Kakamega, Kenya

Abstract: Business processes have an inherent complexity which if not controlled can keep on increasing with
time, thus making the processes error-prone, difficult to understand and maintain. In the last few years, several
researchers have proposed a number of metrics which can be used to measure and therefore control the
complexity of business processes. In this study, a swrvey of business process complexity metrics is conducted
with the goal of mvestigating if there are any gaps in literature. Initially, a description of the process of metrics
definition and validation 1s presented, followed by an analysis of business process complexity metrics that have
appeared in literature in the last 5 years. The reviewers checked whether the identified metrics have any tool
support, whether they have been validated and whether validation results are significant or not. Findings show
that few business process complexity metrics have been proposed so far and that even fewer have been
validated. In order to address these 1ssues, some future research directions are proposed.

Key words: Business processes, complexity metrics, empirical validation, theoretical validation

INTRODUCTION

Web-based organizations are nowadays turning to
business process modeling so as to gain a competitive
advantage in their respective markets. In order to meet
this need, many business process modeling languages
have been proposed such as the popular Business
Process Execution Language (BPEL) (BPEL, 2007). By
using BPEL, organizations can for instance create
business processes that describe the logic of their
business transactions. One problem with business
processes is that they tend to grow larger and more
complex with age whenever new activities are introduced
nto the existing process (Cardoso, 2008). Highly complex
processes are error-prone, difficult to understand and
difficult to maintain. Consequently, high complexity in
business processes 1s undesirable and must be controlled.

Over the years, software metrics have proven to be
very effective in controlling complexity and therefore
enswring that high quality software is produced. This idea
15 also supported by Parthasarathy and Anbazhagan
(2006), who observe that if used properly, metrics can
allow us to quantify success or failure, improvement and

make useful managerial decisions concermng software or
processes. Many valuable software product and process
metrics have been proposed in the last few decades. Most
of these metrics fall under size and complexity categories
while others fall under cohesion and coupling. For
instance, Al-Hajn et al. (2005) proposed a modification of
the standard Function Points (FP) measure by replacing
its subjective weights with improved weights that are
derived using an artificial neural network technique;
Koh et al. (2008a) proposed an exponential effort
estimation model that eliminates FP’s general system
characteristics; and Atan et al. (2007) proposed a suite of
81X metrics to measure software process models. Koh et al.
(2008b) provided more insights on software complexity
metrics for object oriented software in their survey paper.
The success enjoyed by software metrics has inspired
business researchers to propose some useful complexity
metrics with the goal of ensuring that enacted business
processes are of high quality. The term complexity has
been used by metrics researchers to refer to how difficult
an entity 1s to understand. The problem is that very few
business process metrics have been proposed so far
(Ghani et al., 2008; Cardoso et al., 2006) and even fewer

Corresponding Author: Geoffrey M. Muketha, Department of Information Systems,
Faculty of Computer Science and Information Technology, Universiti Putra Malaysia,
43400 Serdang, Selangor, Malaysia Tel: +6 017 369 8350 Fax: +6 03 8946 6577
1336

Inform. Technol J., 9 (7): 1336-1344, 2010

[
>

Entlty category Entlty Attribute Metric
Delermine | [dentify entity to | Identify attribuies | Define size metric
category of entity |be measured e.g.,|of interest e.g., size| e.g., number of
that needs to be | business process |of business process|activities (NOA) in|
measured e.g., model model the model
product

Fig. 2: Metrics definition process

metrics definition. However, reuse 1s only possible where
the primary domain of the technology and the new domain
are closely related such that the cost of extending the
technology is minimal. Several authors have observed
that there are many similarities between software
programs and business processes (Gham et al, 2008;
Vanderfeesten et al., 2007, Cardoso et al., 2006). The
notion that processes can be treated like software was
first coined by Osterweil, who advocated process
programming arguing that technologies that are used to
build application software can also be used to build
processes since the two bear structural similarities
(Osterweil, 1997). However, the two fields have some
differences too and software metrics cannot be consumed
directly by business processes. Sometimes the differences
are only in the naming of identifiers, in which case
mapping 1s easy and straight forward. Other differences
are more fundamental, for example there are semantic
differences between certain control-flow structures of
business processes and those of software programs, as is
the case with BPEL’s pick structure, which instead of
simply testing a Boolean condition like ordinary if-else
structures, waits for an on Message or on Alarm message
before it can execute. Another case 1s the handling of
parallel processing, which is implemented in BPEL using
the flow structure. The flow structure executes several
activities in parallel and then synchronizes their results.
This makes parallelism more costly than either iteration or
branch structures. While parallel programming 1s not a
new concept in software engineering (Qureshi and
Manuel, 2006), many imperative and object oriented
languages are yet to implement it. These differences need
to be taken into consideration if adaptation 1s to be a
viable option for obtaimng new business process metrics.

Theoretical validation: Here, three theoretical validation
methods that are frequently cited in business process
literature are presented. These methods mclude: (1)
identifying scale types of new metrics, (2) checking
whether the satisfied Briand’s generic
measwement framework and (3) checking whether the
metrics satisfied Weyuker’s properties. The main aim of

metrics

theoretical validation is to establish whether the new
metrics are structurally sound and if they do not violate
meastrement theory.

Scale types: Identifying the scale types of newly defined
metrics 18 perhaps the first form of theoretical validation
that the metrics should be subjected to. A knowledge of
the scale type of a metric helps to determine what
transformations are admissible on the metric. It also sheds
light on the meamngfulness of the measures that the
metric will generate (Fenton and Pfleeger, 1997). This is
because a set of admissible transformations exist for each
scale type. As an example, if a person’s weight is
represented with two different units such as kilograms
and pounds, then the weight of the person should not be
distorted since the two units are both related by an
admissible relation. Therefore, a measure is meamngful if
its truth or false values remain unchanged when different
units are used. Scale types also allow us to determine
what set of computations can be performed on them and
which ones cannot be performed on them. Table 1 shows
these scale types together with ther admissible
transformations.

Briand’s generic measurement framework: Briand et al.
(1996) have proposed a framework that categorizes metrics
into size, length, complexity and coupling and cohesion.
Each of the five categories proposes a set of properties
which need to be satisfied by any metric falling under that
category.

This section presents a summary of size, length and
complexity categories from Briand’s framework. Size and
length are of interest to business process researchers
since the two categories constitute a form of complexity
called activity complexity (Cardoso, 2006). Coupling and
cohesion metrics are excluded in this study since they
belong to a different category other than complexity.
Briand’s framework was meant to validate metrics for
modular software programs, but an effort was made to
map it into the business process perspective in order to
be able to utilize it effectively. While some business
process modeling languages have sub-programs which
can be treated as modules, others such as BPEL lack
sufficient modularity and flexibility features (Charfi and
Mezini, 2007). Charfi and Mezini (2007) have attempted to
address these issues using an aspect-oriented approach
for BPEL while Zhang and Du (2009) have proposed a
process generation approach that can make workflow
processes more flexible. In the case of BPEL, an
assumption can be made that the equivalent of a module
is a structured activity structwre. Some simple processes
that contain only one structured activity in them may also
be treated as modules.

1338

Inform. Technol J., 9 (7): 1336-1344, 2010

Table 1: Scales of measurement (Adapted from Fenton and Pfleeger, 1997)

Admissible transformation thow measures

Scale type M and M’ must be related) Examples
Nominal 1-1 mappings from M to M' Labeling, classify ing entities
Ordinal Monotonic increasing function from M to M’ i.e., Preference, hardness, air quality,
M ie, M GO=M) implies M' GO=M &) intelligence tests (raw scores)
Interval M =aM+tb (a>0)) Relative time, temperature (Fahrenheit, Celsius intelligence tests (standardized scores)
Ratio '=aM (a>0) Length, time intervals, temperature (Kelvin)
Absolute M=M Counting entities

Size of the process: The size of a process P is a function
Size (P) that 1s characterized by the following three
properties which need to be satisfied by size metrics.

* Size 1: The size of a process is nonnegative

e Size 2: The size of a process is null if the process is
empty

¢ Size 3: The size of a process 1s equal to the sum of
the sizes of two of its modules (e.g., sub-process,
scope etc.) such that any element of the process 1s
an element of either the first or the second module

Length of the process: The length of a process P is a
function Length (P) that 1s characterized by the following
five properties which need to be satisfied by length
metrics.

¢ Length 1: The length of a process cammnot be
negative, but can be null if the process has got no
elements

e Length 2: The length of a process i3 null if the
process 1s empty

e Length 3: Adding relationships between elements
of a connected component of a process does not
increase the length of the process

e Length 4: Adding relationships from elements of two
separate connected components of a process does
not decrease the length of the process

e Length 5: The length of a process that is composed
of two disjont modules 1s equal to the maximum of
the lengths of the two modules

Complexity of the process: The complexity of a process P
15 a function complexity (P) that is characterized by the
following five properties which need to be satisfied by
complexity metrics.

¢ Complexity 1: The complexity of a process carmot be
negative, but can be mull if a system has got no
elements.

e Complexity 2: The complexity of a process is null if
the process has got no structured activities in it

e Complexity 3: The complexity of a process does not
depend on the convention chosen to represent the
relationships between its elements

s Complexity 4: The complexity of a process is no less
than the sum of the complexities of any two of its
modules with no relationships in common

s Complexity 5: The complexity of a process
composed of two digjoint modules iz equal to the
sum of the complexities of the two modules

Weyuker’s properties: Weyuker (1988) has proposed
nine properties (also called axioms) for validating
complexity metrics. These properties were initially
intended to validate only complexity metrics. This is
because Weyuker did not attempt to address metrics that
are outside the scope of complexity. For this reason,
simple one-dimensional metrics such as size or length
metrics always show weaknesses when validated with
Weyuker's properties. Weyuker’s properties have
therefore been much criticized for failing to cater for non
complexity metrics. They have also been criticized for
being unsuitable for validating object oriented metrics.
Omne reason for being unsuitable for object oriented
metrics 1s that object oriented languages themselves have
already addressed those structural weaknesses that
Weyuker was trying to address.

Despite these criticisms, Weyuker’s properties are
one of the most widely cited framewaorks for theoretical
validations of metrics. Weyuker’s properties are very
much valid for business process metrics validations
because business processes such as those created with
BPEL language have a similar structure to procedural
programs. Tt is also worth noting that Weyuker’s
properties have been extended to cater for business
processes (Cardoso, 2008). The nine Weyuker’s
properties are summarized below.

* Property 1: This property requires that a good metric
should be able to discriminate between two different
processes such that they do not retun same
measurement results

* Property 2: This property asserts that a changing
process must also cause a change to its complexity.
A good metric should be able to detect this change

* Property 3: This property asserts that there exist two
different processes whose data types and values are
identical but whose variable names differ. A good
metric should return same complexity for such
processes

1339

Inform. Technol J., 9 (7): 1336-1344, 2010

e Property 4: This property asserts that two
processes could look identical externally but mdeed
be different in their internal structure. A good metric
should be able to look beyond the external features
and discriminate two metrics based on their internal
structure

e Property 5: This property asserts that two
interacting processes may have zero or additional
(but never negative) complexity to that which is
present in the two imtial processes themselves. This
complexity is introduced whenever processes
mteract and a good metric should be able to detect 1t

* Property 6: This property asserts that it is possible
to have two identical processes, but when
concatenated to a third same process, their resulting
complexities are not equal. This 1s an indicator that
the act of combining two processes has the potential
of introducing complexity additional to that inherent
in the in the original processes. A good metric
should be able to discriminate between two such
processes

¢ Property 7: This property asserts that the order of
statements affects complexity ie., two identical
processes can have different complexity when the
order of their statements is changed. A good metric
should be able to detect this change

* Property 8: If two processes differ only in the choice
of names for different elements, then two processes
are equal. A good metric should be able to return the
same value for such processes.

* Property 9: This property asserts that interaction
between parts of a process cause additional positive
complexity i.e., it makes additional complexity a
requirement when two processes keep on interacting
for some time, or as the process grows with age.
Since growth in process complexity occurs when new
nodes are added and none of the nodes has negative
values, then it 13 clear that the complexity of the new
process is always equal to or greater than the sum of
the two original processes. A good metric should be
able to detect this change in behavior

Empirical validation: Empirical strategies available to
software engineers and business process researchers
include swveys, case studies and experiments
(Wohlin et al., 2000; Fenton and Pfleeger, 1997). The main
aim of empirical validation is to establish whether the new
metrics are measuring what they were intended to measure
and is complementary to theoretical validation. Therefore,
both theoretical and empirical validations are needed in
order to avoid the problem of defining a theoretically
sound metric which 1s otherwise useless in its practical
application.

Surveys: According to Wohlin et al. (2000), surveys are
retrospective. This means that they are used to
investigate some tool or technique that has been in use
for a while. Normally, a sample is taken from some
population and later the analyzed results are generalized
to the population.

Case studies: Case studies are used for monitoring
ongoing activities. Wohlin et al. (2000) states that the aim
of case studies 1s to track an attribute or to establish a
relationship between several attributes, which makes it an
observational study.

Experiments: Experiments are formal, rigorous and
repeatable. Many authors agree that experiments have
more control of variables than case studies (Wohlin et af.,
2000; Fenton and Pfleeger, 1997). This is because they are
typically conducted in laboratories, where subjects are
assigned to different treatments at random. The main goal
of experiments 1s to keep one or more variables constant
while manipulating all other variables. Consequently, the
effects of this mampulation are measured and mterpreted.

In this study, it was found out that experiments were
the most frequently used empirical validation method.
By taking advantage of the fact that experiments are
repeatable, some authors validated ther metrics in
families of replica experiments. Replicating experiments
in a different seting or with different subjects
increases validity of the results and is good for the
industry.

Metrics tool implementation: Metrics tools are important
in that they help to automate the process of metrics
collection and calculation. Metrics tools are language
recognizers and design considerations vary widely
depending on requirements. One strategy 1s to design a
tool with a metrics computation component, a storage
component and a presentation component. The
presentation component serves as the user interface while
the storage component keeps track of metrics data.

In addition, some metrics tools are designed to
recognize one modeling language such as the Software
Process Measurement Application (SPMA) tool
(Atan et al., 2007). Other tools such as the ProM
framework are more comprehensive and can recognize
multiple modeling languages (Van Dongen ef af., 2005).

COMPLEXITY METRICS FOR BUSINESS
PROCESSES

Several researchers have attempted to classify
software metrics 1 the past. One notable effort to
categorize business process complexity metrics was done

1340

Inform. Technol J., 9 (7): 1336-1344, 2010

by Cardoso (2008). Such an effort is not made here mainly
because it was felt that very few metrics exist to warrant
it. It was therefore left out for a later date when there will
be more metrics and better empirical knowledge n the field
of business process measurement.

The following sections present existing metrics
grouped by author. Identification of the metrics was
based on whether they fell within the scope of business
process complexity. Other metrics that are slightly outside
the scope of complexity (such as certain error metrics) but
which were otherwise mtended to serve as pomnters to
complexity were also included. In most cases, the authors
did not indicate whether there is any tool support or
not. Also, where empirical studies are recorded, they
normally took the form of experiments. To the best of our
knowledge, the authors whose metrics are described here
are also some of the most frequently cited in the field of
business process complexity metrics. Although it is
possible that some good papers could have possibly been
left out due to limitations in our search criteria, an effort
was made to present what has been happening in this
field in the last 5 years.

Cardoso metrics: Cardoso has proposed the Control-
Flow Complexity (CFC) metric for measuring control-flow
complexity of business process models (Cardoso, 2006,
2008). CFC 1s an adaptation of McCabe’s cyclomatic
complexity metric (McCabe, 1976). While McCabe’s
cyclomatic complexity assigns sanie semantics to all
decision nodes, CFC distinguishes the various nodes
as having different semantics such as AND-splits,
XOR-splits, OR-joins ete. CFC 1s computed by simply
adding the CFC of all split constructs (Cardoso, 2008).
This metric has been validated with Weyuker’s properties
(Cardoso, 2008) and with several experiments (Cardoso,
2008; Rolon et al., 2008). In the experiments, Spearman’s
correlation coefficients were used to test the hypothesis
and results were significant.

In a separate study, Cardoso et al. (2006) have
proposed a set of metrics that have been adapted from
software engineering. These metrics include the number
of activities in a process (NOA), the number of activities
and control-flows i a process (NOAC), the number of
activities, joins and splits (NOAJS), the Interface
Complexity (IC) and Halstead-based Process Complexity
(HPC).

The first three metrics are adapted from the Lines of
Code (LOC) metric that has been used in software
engineering for many years to measwre length of software.
According to Cardoso et al. (2006), these simple process
metrics constitute a type of complexity called activity
complexity.

Another type of metric proposed by Cardoso et al.
(2006) is called Interface Complexity (IC). IC is adapted
from the information flow metric (Henmry and Kafura,
1981). The IC metric 13 computed as follows:

IC = length* (No. of inputs* No. of cutputs)’

where, inputs are incoming data flows and output is the
outgoing data flows.

The Halstead metrics model computed from operands
and operators present in a program. Cardoso ef af. (2006)
have proposed a metric called Halstead-based Process
Complexity (ITPC) based on Halstead metrics. The authors
of HPC metric replace number of unique operators with
number of umque activities, splits and joins and
control-flow elements. They also replace number of
unique operands with number of unique activities, splits
and joins and control-flow elements. Number of unique
operands 1s replaced by number of wuque data
variables being mampulated by the process and its
activities. From these, they derive the equivalent of total
number of operator occurrences and total number of
operand occurrences as well as length, volume and
difficulty.

Cardoso et al. (2006) have also proposed three
graph-oriented metrics, namely, the Coefticient of Network
Complexity (CNC), the Complexity Index (CI) and the
Restrictiveness Estimator (RE). CNC measures complexity
of a graphic and is defined as the number of arcs divided
by mumber of activities, joins and splits. CT is the minimal
number of node reductions that reduce the graph to a
single node. RT estimates the number of feasible
sequences in a graph. A summary of these metrics is
shown in Table 2.

Gruhn and Laue metrics: Gruhn and Laue (2006) have
proposed the cognitive weight for business process
models. This metric is an adaptation of the Cognitive
Functional Size (CFS) proposed earlier for software
measurement by Shao and Wang (2003). Cognitive
complexity metrics are based on cognitive informatics.
The proponents of cognitive complexity metrics contend
that there are three factors that lead to complexity, namely,
internal architecture of software, input data flowmng into
the module and output data flowing out of the module.
This means that cognitive complexity is a function of
these three factors (Shaco and Wang, 2003). Unlke its
software counterpart, this metric 1s designed for use with
graphical business process models that emphasize on
visual communication with users but offer
formal semantics. As a consequence of this design
consideration, the main limitation of this metric 1s that it

minimal

1341

Inform. Technol J., 9 (7): 1336-1344, 2010

Table 2: Summary of complexity metrics for business processes

Tool Theoretical ~ Significant Empirical Rignificant

Authors Metrics support validation results validation results
Cardoso (2008) CFC Unknown Yes Yes Yes Yes
Cardoso et al. (2006) NOA, NOAC, NOAIJS, IC, HPC, CNC, CI, R1 Unknown No No No No
Gruhn and Laue (2006) CW for BPM, NOA, information flow, Unknown No No No No

max/mean nesting depth, No. of handles,

(anti) patterns for BPM
Lassen and van der Aalst (2009) ECaM, ECyM, SM Yes No No Yes Yes
Vanderfeesten et al. (2008) cC Unknown No No Yes Partial
Mendling and Neumnann (2007) 8y (@), I1 (G), E (G), by, CYCy, TS (G) No No No Yes Partial

Unknown: No clear indication of presence or absence of tools; Yes: Agreement; No: Disagreement, Partial: Some ly potheses were accepted while others were

rejected

ignores two of the three factors that comprise cognitive
complexity, namely, inputs and output data flows and
concentrates only on control-flows.

Gruhn and Laue (2006) have also proposed adapting
the information flow metric (Henmry and Kafura, 1981)
for business processes. They define information flow
as (Fan-m * Fan-out)’. Unlike the case of the IC
(Cardoso et al., 2006), this metric does not include length
of the process in its formula.

Other metrics proposed by Gruhn and Laue (2006)
mclude number of activities, maximum/mean nesting
depth, mumber of handles (which measures well-
structuredness of a model) and (anti)patterns for business
process models (which counts usage of anti-patterns in a
business process models and requires experience).
Gruhn and Laue (2006) also separately proposed the
mumber of activities in a process. This metric was also
proposed by Cardoso et al. (2006) around the same time.
Gruhn and Laue metrics have not yet been validated. A
sumnmary of these metrics 1s shown in Table 2.

Lassen and Aalst metrics: Lassen and van der Aalst
(2009) have proposed three complexity metrics for a
subclass of Petri Nets called Workflow nets. These
metrics include extended Cardoso metric (ECaM),
extended cyclomatic metric (ECyM) and Structuredness
Metric (SM). ECaM extends CFC in that it 1s tailor-made to
support Petr1 Nets, while ECyM extends cyclomatic metric
by measuring graph reachability rather than graph
structure. On the other hand, the SM metric measures
well-structiredness m the design structure. These
metrics have been implemented in the Prom framework
(Van Dongen et al, 2005). ProM is a business process
metrics tool Activity
Momtoring (BAM). ProM allows many plug-mns, which
makes it easy to extend. It also integrates the functionality
of several existing process mining tools but also provides
additional featwres. ProM supports several business
process modeling languages such as Petri Nets,
Event-driven Process Chains (EPC), Social Networks etc.
TLassen and Aalst metrics have been validated in an

that focuses on Business

experiment in which Pearson product correlations were
used. The results were found to be significant. A
summary of these metrics 18 shown m Table 2.

Vanderfeesten metric: Vanderfeesten et ¢l (2007) have
proposed a metric called Cross-Connectivity (CC) metric
based on cognitive complexity. This is an error prediction
metric that measwres the strength of the links between
process model elements. Tt is based on the hypothesis
that process models are easier to understand and contain
fewer errors if they have a high cross-connectivity. In
addition to predicting errors, it can also measure
understandability of a business process model. This
metric has been evaluated empirically using Spearman
correlation coefficients and multivariate logistic
regression. Results were significant for error prediction
hypothesis, but were insignificant for understandability
hypothesis. However, the authors argue that CC can
explain varation in understandability when combined with

existing metrics. A summary of this metric 1s shown in
Table 2.

Mendling and Neumann metrics: Mendling and Neumann
(2007) have proposed six error metrics that are closely
related to complexity. These metrics are based on graph
theory and include size, separability, sequentiality,
structuredness, cyclicity and parallelism. Size, S, (G),
counts the number of nodes n a graph G and an increase
in size increases error probability. Separability, IT (&),
is the ratio of cut-vertices to the number of nodes.
Cut-vertices are those whose deletion separates the
process meodel into multiple components. An increase in
separability implies decrease in error probability.
Sequentiality, = (G3), takes sequences as the building
blocks and computes a ratio of arcs of a sequence to the
total number of arcs. Increasing sequentiality reduces
error probability. Structuredness, ¢, is how far a process
model can be built by nesting blocks of matching join and
split connectors. Its mcrease umplies decrease in error
probability. Cyclicity, CYC,, relates munber of nodes on
some cycle with total number of nodes. An increase in

1342

Inform. Technol J., 9 (7): 1336-1344, 2010

cyclicity implies an increase in error probability.
Parallelism, TS (G), 1s related to the number of concurrent
paths that must be synchronized. Increasing parallelism
unplies increased error probability. The Mendling and
Neumann metrics were evaluated empirically and results
for size, separability and structuredness metrics were
significant. Results for the other three metrics were
insignificant. A summary of these metrics is shown in
Table 2.

CONCLUSIONS

The nvestigation in this study mndicates that only a
small number of the proposed metrics have been validated
either theoretically or empirically. Moreover, most of the
authors do not categorically state whether they created
any tools to support their metrics. In addition, most of the
validations conducted were empirical and not theoretical.
Where empirical validation took place, experiments were
the main method of choice, with some experiments
showing mixed results. This trend is wornrying because
metrics validation is the only way to ensure that the new
metrics are theoretically sound and that they are
measuring what they were intended to measwe. These
two goals of validation can easily be achieved if both
theoretical and empirical validations are conducted since
they complement each other.

In order to address the issues raised in this study
concerning the current state of business process
complexity metrics, future research efforts should be
directed towards defiming new complexity for business
processes and then validating them both theoretically and
empirically. Another research direction would be to
umplement metrics tools for automating business process
measurement.

REFERENCES

Al-Hajri, MA., AAA Gham, MH. Selamat and
MN. Sulaiman, 2005. Modification of standard
function pomt complexity weights system. J. Syst.
Software, 74: 195-206.

Atan, R., A AA. Gham, MH. Selamat and R. Mahmod,
2007. Software process modeling using attribute
grammar. Int. J. Comput. Sci. Network Sec., 7: 273-281.

BPEL, 2007. Web services business process execution
language version 2.0. http://docs.casis-
open.org/wsbpel/2.0/CS01/wsbpel-v2.0-CS01 html.

Briand, L.C., 8. Morasca and V.R. Basili, 1996.
Property-based software engineering measurement.
IEEE. Trans. Software Eng., 22: 68-86.

Cardoso, T., 2006. Complexity analysis of BPEL web
processes. Software Process: Improve. Practice T,
12: 35-49.

Cardoso, I., I. Mendling, G. Neumann and H.A. Reijers,
2006. A discourse on complexity of process models.
Proceedings ofthe BPM 2006 Workshops on
Business Process, (BWBP’06), Vienma, Austria,
pp: 115-126.

Cardoso, J., 2008. Business process
complexity: Metric, evaluation and validation. Int.
T. Web Serv. Res., 5: 49-76.

Charfi, A. and M. Mezimi, 2007. AO4BPEL: An
aspect-oriented extension to BPEL. World Wide
Web, 10: 309-344,

Fenton, N.E. and S.L. Pfleeger, 1997. Software Metrics: A
Rigorous and Practical Approach. 2nd Edn,
International Thomson Publishing, Boston,
ISBN: 0-534-95425-1.

Ghany, A A A, K. T. Wei, G.M. Muketha and WP. Wen,
2008. Complexity metrics for measuring the
understandability and maintainability of business
process models using Goal-Question-Metric (GQM).
Int. J. Comput. Sci. Network Secur., 8 219-225.

Gruhn, V. and R. Laue, 2006. Adopting the complexity
measure for business process models. Proceedings of

control-flow

the 5th IEEE International Conference on Cogmtive
Informatics, (IICCI"06), Beyjing, China, pp: 236-241.

Henmry, S. and D. Kafira, 1981, Software structure metrics
based on information flow. IEEE Trans. Software
Eng., 7: 510-518.

Koh, TW., MH. Selamat and A.A.A. Ghan, 2008a.
Exponential effort estimation model using unadjusted
fimction peoints. Inform. Technol. T., 7: 830-839.

Koh, TW., MH. Selamat and A A .A. Ghani, 2008b.
Review of complexity metrics for object oriented
software products. Int. J. Comput. Sci. Network Sec.,
8: 314-320.

Lassen, K.B. and W.M.P. van der Aalst, 2009. Complexity
metrics for workflow nets. Inform. Software Technol.,
51: 610-626.

McCabe, T.T., 1976. A complexity measure. [EEE Trans.
Software Eng., 2: 308-320.

Mendling, J. and G. Neumann, 2007. Error metrics for
business process models. Proceedings of the 19th
International Conference on Advanced Information
Systems Engineering, (CATSE’07), USA., pp: 53-56.

Osterweil, 1.T., 1997, Software processes are software too
revisited: An invited talk on the most influential
paper of ICSE 9. Proceedings of the 15th Intemational
Conference on Software Engineering, May 17-23,
Boston, Massachusetts, United States, pp: 540-548.

1343

Inform. Technol J., 9 (7): 1336-1344, 2010

Parthasarathy, S. and N. Anbazhagan, 2006. Analyzing
the software quality metrics for object oriented
technology. Inform. Technol. 1., 5: 1053-1057.

Qureshi, K. and P. Manuel, 2006. A survey of concurrent
object-oriented languages (Cools). Inform. Technol.
I, 5 601-611.

Rolon, E., I. Cardoso, F. Garcia, F. Ruiz and M. Piattini,
2008. Analysis and wvalidaton of control-flow
complexity measures with BPMN process models.
LNBIP, 29: 58-70.

Serrano, M., C. Calero and M. Piattini, 2002. Validating
metrics for data warehouses. IEEE Proc. Software,
149: 161-166.

Shao, T. and Y. Wang, 2003. A new measwe of software
complexity based on cognitive weight. Can. . Elect.
Comput. Eng., 28: 69-74.

Soni, D., R. Shnvastava and M. Kumar, 2009. A framework
for validation of object-oriented design metrics. Int.
I. Comput. Sci. Network Secur., 6: 46-52.

Ven Dongen, BF., A KA. de Medewros, HM.W. Verbeek,
A TMM. Weijters and W.M.P. van der Aalst, 2005.
The prom framework: A new era in process mining
tool support. LNCS, 3536: 444-454.

Vanderfeesten, 1., . Cardoso, J. Mendling, H.A. Reijers
and W. van der Aalst, 2007. Quality Metrics for
Business Process Models. In: Workflow Handbook
2007, Fischer, L. (Eds.). Future Strategies Inc.,
Lighthouse Point, FL.., USA., pp: 179-190.

Vanderfeesten, 1., H.A. Reijers, . Mendling, W. van der
Aalst and J. Cardoso, 2008. On a quest for good
process models: The cross-comnectivity metric.
LNCS, 5074: 480-494.

Weyuker, E.J., 1988. Evaluating software complexity
measures. [EEE Trans. Software Eng., 14: 1357-1365.

Wohlin, C., P. Runeson, M. Host, M.C. Olsson, B. Regnell
and A. Wesslen, 2000. Experimentation in Software
Engineering: An Introduction. Kluwer Academic
Publishers, Hingham, MA, TUSA.

Zhang, F. and Y.Y. Du, 2009. A process generation
approach of dynamic workflows based description
logics. Inform. Technol. T., 8 998-1005.

1344

	ITJ.pdf
	Page 1

