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Abstract Wetlands in Mathioya watershed are declining due to continued alterations caused by human and natural factors. 

This study assessed the effects of spatiotemporal changes in Land Use and Land Cover (LULC), on potential ecosystem service 

value in Mathioya watershed, Murang’a County, Kenya. We considered the period between 1987 and 2020. Supervised 

classification using maximum likelihood classifier was performed in ERDAS imagine v.15. The values obtained from the 

analysis of LULC maps were then used together with the global data for habitats to approximate the ecosystem service value 

(ESV) change within the watershed. Six LULC classes namely, forestland, wetlands, agricultural land, water bodies, built-up 

areas and barren lands, were identified. Analysis of Landsat images revealed that between 1987 and 2020, human activity led 

to decrease in the area covered by wetlands, forestland, water bodies, and barren land. Area under these land cover classes 

decreased by 45%, 34%, 50% and 27%, respectively. During the study period, agricultural land and built-up areas increased 

by 43% and 85%, respectively. Changes in LULC resulted in decline of ESV from $368.5 million/ha/year in 1987 to $337.7 

million/ha/year in 2020. With respect to individual ecosystem services, regulating services declined. Between 1987 and 2020, 

water regulation and climate regulation declined by 48% and 16%, respectively. However, provisioning services such as food 

production increased by 34%. Wetlands play a critical role in the provision of ecosystem services. The loss of wetlands 

translated to decline of critical ecosystem services such as water regulation. Eventually, this will lead to poor water quality 

within the watershed and the entire County, thus impacting negatively on the health of the locals. Hence, there is a need for 

urgent action to prevent the current trend of wetland loss within Mathioya watershed. 
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1. Introduction 

Ecosystem services refer to the benefits that we get from 

the natural ecosystems [1]. The monetary value of the 

relative contribution of ecosystems towards the 

wellbeing of man is referred to as ecosystem service 

value (ESV) [1]. By quantifying the changes in ESV, 

the public can be made aware of the important role 

various ecosystems play. Also, analysis of ESV would 

stimulate conservation of critical ecosystems such as 

wetlands that provide vital services. 

Wetlands provide a variety of environmental benefits, 

including, mitigation of climate change, habitat for 

wildlife, purification of water and flood control [2]. 

Further, wetlands play a significant role in sustaining 

agricultural production and reliability of the world’s 

water resources. With respect to agricultural 

production, wetlands are rich in nutrients and remain 

productive throughout the year. In addition, wetlands 

act as a source of quality pasture during the dry seasons 

and their periphery supports growth of fast maturing 

crops such as vegetables [3].  

https://jsre.jkuat.ac.ke/
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Despite the critical roles wetlands play, they are 

subjected to severe pressure and rapid degradation. 

About 87% of wetlands have been lost globally since 

the pre-industrial era [4]. Harvesting of wetland 

products, grazing, clearing for agriculture and draining 

of the wetlands for irrigation are some of the human 

activities threatening the existence of wetlands. 

Increased human population, coupled with a rise in 

socio-economic activities is a recipe for changes in the 

land use and land cover. To be food secure, man has 

exploited fertile wetlands and converted them to 

farmlands [5]. Lack of policies or the existence of weak 

policies in developing countries like Kenya, also 

contribute to the continued disappearance of wetlands 

[5]. Loss of wetlands would mean loss of the ecosystem 

services provided by wetlands.  

Various authors [1], [6], [7] have conducted studies 

on the ESV of natural resources. Their studies were 

driven by the growing concern about the benefits 

derived from different ecosystems and the potential 

impacts of anthropogenic activities on those ecosystems 

[6]. Land use and land cover change is a consequence 

of the interactions between human beings and the 

environment. LULC change have a direct impact on the 

provision of ecosystem services [8]. Further, LULC 

changes can either increase or decrease availability of 

ecosystem services [9]. A study conducted in West 

Africa reported a decline in ESV due to LULC change 

[10], while another study done in China reported an 

increase in ESV [11]. Thus, this shows that changes in 

ESVs are location specific and making general 

conclusion may not be accurate. 

Murang’a county has undergone rapid changes over 

the past three decades due to the interactions between 

humans and the environment [12], [13]. Particularly, 

wetlands in Murang’a County are facing threats from 

human activities [12], [13]. Despite studies on LULC 

changes being carried out in Murang’a County, no study 

has been carried out to understand the impacts of such 

changes on the ESV. In order to formulate applicable 

natural resource management policies, studies on LULC 

change are essential. Similarly, determining the drivers 

of LULC change is challenging, necessitating more 

research [14]. Drivers of LULC change can be either 

location-specific or time-bound, or both [15]. 

Additionally, in order to predict future changes and 

mitigate these changes, it is crucial to carry out studies 

relating to patterns, extent and rates of change [16].  

Mathioya watershed is endowed with many small 

wetlands which are critical in the provision of water to 

the locals and neighboring counties such as Nairobi, the 

capital city of Kenya. Despite the crucial roles these 

wetlands play, they are being converted to agricultural 

lands at an alarming rate. The consequences of such 

changes in LULC are not properly understood. Thus, 

the objective of the study was to evaluate the effect of 

LULC change on the potential ecosystem service value 

in Mathioya watershed, Murang’a County, Kenya, 

between 1987 and 2020. 

2. Materials and Methods 

2.1. Study Area 

The study was conducted in Mathioya watershed, 

Murang’a county, Kenya. The watershed covers three 

Sub-counties namely; Kiharu, Mathioya and Kangema. 

The area is located between longitudes 36°50'0"E and 

37°10'0"E and latitudes 0o45'0"S and 0o34'30"S with an 

area of 541 km2 (Fig. 1). 

The main tributaries of River Mathioya are River 

Mathioya South and River Mathioya North, which are 

in turn fed by many low order streams (Fig. 1). The 

study area extends from an altitude of 2500 m to 2900 

m above sea level (ASL). The area is mostly used for 

small-scale tea production, as well as coffee, maize, 

potatoes, and agroforestry systems, including 

macadamia nut cultivation. In addition, the majority of 

households engage in subsistence farming, primarily 

maize, vegetables, and arrowroots, as well as animal 

rearing. The soils in the area are primarily nitisols and 

andisols, with pyroxenes, olivine, amphiboles, and 

feldspars as major constituents [17]. The rainfall pattern 

is bimodal, with long rains occurring between March 

and May and short rains occurring between October and 

December [17]. The annual average rainfall reaches a 

maximum of 2700 mm at 2500 m ASL and the 

maximum daily temperature ranges between 26ºC and 

30ºC, while the daily minimum temperature ranges 

between 14 ºC and 18 ºC [17]. 
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 Fig. 1: Location of Mathioya Watershed, Murang’a County, Kenya  

 

2.2. Data Acquisition and Image Processing  

For LULC analysis, many types of satellite imagery are 

accessible. Landsat imagery, on the other hand, is 

recommended when conducting studies to monitor 

LULC changes because of its high temporal resolution 

and near and mid-infrared bands, which allow for a 

close examination of vegetation and landscape features 

[14]. Four cloud-free Landsat 5 (TM), Landsat 7 

(ETM+), and Landsat 8 (OLI) satellite data sets were 

used in this study. The cloud cover on all four images 

was less than 10%. To help limit the impact of seasonal 

fluctuations on LULC analysis, the images used were 

taken throughout the same yearly season. The precise 

characteristics of the data used in this study are 

presented in Table 1. 

ERDAS Imagine v. 2015 was used to preprocess the 

data. This involved atmospheric correction, layer 

stacking, geo-referencing and clipping of the image. 

The four images had the same projection parameters 

(UTM Zone 37, with WGS 84).   

 

Table 1: Characteristics of the Landsat images used for the study 

Satellite Sensor Path/Row Spatial 

resolution 

(m) 

Spectral 

bands 

Band range 

(µm) 

Date  Source 

Landsat 5 TM 168/60 30 Band 4 

Band 3 

Band 2 

0.76-0.90 

0.63-0.69 

0.52-0.60 

1987-02-25 USGS 

Landsat 5 TM 168/60 30 Band 4 

Band 3 

Band 2 

0.76-0.90 

0.63-0.69 

0.52-0.60 

1997-01-29 USGS 

Landsat 7 ETM+ 168/60 30 Band 5 

Band 4 

Band 3 

1.55-1.75 

0.77-0.90 

0.63-0.69 

2007-02-13 USGS 

Landsat 8 OLI 168/60 30 Band 6 

Band 5 

Band 4 

Band 3 

1.57-1.65 

0.85-0.88 

0.64-0.67 

0.53-0.59 

2020-02-20 USGS 
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2.3. Image Classification 

Maximum Likelihood Classifier was utilized to conduct 

supervised classification in ERDAS Imagine v. 2015. 

According to Kaul and Sopan [18], maximum 

likelihood classification algorithm (MLCA) is a 

preferred choice, because it is a straightforward and 

easy to implement approach. Furthermore, it is well-

known and has been successfully applied to a wide 

range of remote sensing issues. Consequently, 75 

training datasets were obtained for each LULC class 

with the help of Google Earth Pro [19]. The images 

were classified based on the researcher’s local 

knowledge gathered during ground truthing. The 

identified classes were forestland, agricultural land, built-

up area, wetlands, water bodies and barren land (Table 2). 

 

 

Table 2: Description of different LULC categories 

LULC Class Description 

Wetland Permanent grasslands along the streams, marshy land and swamps [14] 

Water body Comprises of rivers, ponds, and dams [20] 

Forest Areas that are densely covered with trees or open forest [14] 

Built-up  Settlements, industries, and roads [21] 

Agricultural land Both cultivated and uncultivated agricultural lands [14]. 

Barren land Areas with no vegetation cover, exposed soils, quarry, and rocks [21]. 

2.4. Accuracy Assessment of the Classified Images 

In LULC change 

analysis, assessing the accuracy of a classed image is a 

crucial step [22]. To guarantee that all six (6) LULC 

classes were appropriately represented based on their 

proportional area; an equalized random sample 

procedure was utilized to collect 98 reference data. The 

reference data was extracted using Google Earth 

images. The confusion (error) matrix was used to 

determine the accuracy evaluation, which included the 

Kappa coefficient, overall accuracy, producer's and 

user's accuracies [23]. The correlation between the 

classified map and the reference data is reported using 

the Kappa coefficient [14]. Producer’s accuracy shows 

how well a given land cover type has been classified. 

The user’s accuracy examines the reliability of 

classified LULC. The overall classification accuracy 

was calculated using equation (1). The error matrix was 

used to compute the overall accuracy of the six (6) land 

use classes both individually and collectively. 

𝑂𝐴 =
𝐶

𝐴
 100 

(1) 

 

Where: OA is the overall classification accuracy; C is 

the number of correct points; A is the total number of 

reference points. 

The Kappa coefficient (Khat) was also determined 

for each LULC and used to compare the classification 

accuracy (Table 3). The Kappa coefficient is a 

measurement of how well classification and real values 

agree. A Kappa value of 1 indicates complete 

agreement, whereas a value of 0 indicates no 

agreement [24]. Equation (2) shows how to calculate 

the Kappa coefficient: 

𝑘 =
𝑁 ∑ 𝑚𝑖,𝑖 − ∑ (𝐺𝑖𝐶𝑖)𝑛

𝑖=1
𝑛
𝑖=1

𝑁2 − ∑ (𝐺𝑖𝐶𝑖)𝑛
𝑖=1

 
(2) 

 

Where i is the class number; N is the total number of 

classified values compared to truth-values; mi,i is the 

number of values belonging to the truth class i that have 

been classified as class i (values found along the 

diagonal of the confusion matrix); Ci is the total 

number of predicted values belonging to class i; Gi is 

the total number of truth-values belonging to class i. 

The results of the Kappa coefficient for the periods 

(1987–2020) LULC were analyzed and interpreted 

(Table 3) [24]. 
 

Table 3: Level of Kappa coefficient of agreement 

Kappa 

coefficient (Khat) 

Level of agreement/ 

accuracy 

>0.80  Strong 

0.40-0.80  Medium 

<0.40   Poor  

 

2.5. Land Use Land Cover Change Detection 

2.5.1. Land Use and Land Cover Change  

After supervised classification was performed, initial 

LULC map was edited using Google earth history 

function to verify the LULC classes. Following the 

verification, certain classes were recoded into their 

original classes. Change detection was determined by 

calculating the difference in area between the initial 

and final study periods in the area in square kilometer 
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(km2) for the 1987–1997, 1997-2007, 2007-2020 and 

1987-2020 using equation (3) and (4). 

𝐶 = (∆𝑓―∆𝑖) (3) 

  

𝐶% =
(∆𝑓―∆𝑖)

∆𝑖
× 100 

(4) 

 

Where C is the total change in a given LULC type in 

(km2); C (%) is the LULC change in percentage; Δf is 

the total area coverage of LULC in final year; Δi is the 

total area coverage of LULC in initial year. 

2.5.2. Determination of Annual Rate of LULC 

Change 

Net change in a LULC is the difference between gain 

and loss between images of different periods. The 

annual rate of LULC change for the four periods 

(1987–1997, 1997-2007, 2007-2020 and 1987-2020) 

was calculated using equation (5). 

R =
𝑄2 − 𝑄1

𝑡
 

(5) 

 

Where R refers to the rate of LULC change; Q1 is the 

area (km2) of LULC class of an earlier land cover 

image; Q2 is the area (km2) of LULC class of a later 

land cover image and t is the time interval between Q1 

and Q2 in years. 

2.6. Estimation of Ecosystem Service Values 

The results of the LULC change analysis were 

combined with the ecosystem service value 

coefficients produced by Costanza et al. [1] to estimate 

the ESVs. The ecosystem service value coefficients 

can be employed in a wider range of climatic zones, 

particularly in data-scarce regions of the world [6]. 

Each LULC class was represented by the most 

representative biome (Table 4). 
 

Table 4: LULC classes and their corresponding equivalent 

biome. 

LULC class Equivalent biome 

Agricultural land Crop land  

Forest land Tropical forest 

Built-up area Urban 

Wetlands  Swamps/floodplains 

Water body Lakes/rivers 

Barren land Desert 

Data obtained from [1]. 

Author [1] developed ecosystem service values for 

17 ecosystem services (Table S5). The individual 

ecosystem services were then grouped into four 

categories including regulating, cultural, provisioning 

and supporting services. The value of each ESV 

category is the sum of the individual ecosystem service 

values. The values are used to assess changes in the 

service values over time and space [25]. The aggregate 

ESV in the study area for 1987, 1997, 2007 and 2020 

was obtained using equation 10 [6]. 

 

𝐸𝑆𝑉 = ∑(𝐴ₖ ∗ 𝑉𝐶ₖ)                             (10) 

 

Where: ESV is the estimated ecosystem service value; 

Ak is the area (ha), and VCk is the value coefficient 

(US$ ha−1 yr−1) for LULC class k. Change in ESV was 

estimated by calculating the differences between the 

estimated values for each LULC class in 1987, 1997, 

2007 and 2020. The percentage changes in ESV 

between each year were calculated using equation 11: 

 

% 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝐸𝑆𝑉 =  
𝐸𝑆𝑉ₜ₂−𝐸𝑆𝑉ₜ₁ 

𝐸𝑆𝑉ₜ₁
100                    (11) 

 

Where: ESVt2 (US$ ha−1 yr−1) is the ecosystem service 

value in the recent year, and ESVt1 (US$ ha−1 yr−1) is 

the ecosystem service value in the previous year. 

Further, the effects of LULC change on the individual 

ecosystem services were calculated using Equation 12 

[6]. 

 

𝐸𝑆𝑉ᵢ = ∑(𝐴ₖ ∗ 𝑉𝐶ᵢₖ)                                              (12) 

 

Where: ESVi is the estimated ecosystem service value 

of function i, Ak is the area (ha) and VCik the value 

coefficient of function i (US$ ha−1 yr−1) for LULC 

category k. 

Sensitivity analysis was carried out to establish the 

dependence of the changes in ESV on the applied 

valuation coefficients [6]. The value coefficient of a 

given LULC class was adjusted by ±50 % keeping the 

value coefficient constant for the other LULC classes 

[25]. Coefficient of sensitivity (CS) was calculated 

using the standard economic concept of elasticity as 

shown in Equation (13) [7], [25].  

 

𝐶𝑆 =
(𝐸𝑆𝑉ⱼ−𝐸𝑆𝑉ᵢ)/𝐸𝑆𝑉ᵢ

(𝑉𝐶ⱼₖ−𝑉𝐶ᵢₖ)/𝑉𝐶ᵢₖ
                                             (13) 

 

Where: ESV is the estimated ecosystem service value, 

VC is the value coefficient, ‘i’ and ‘j’ represent the 

initial and adjusted values, respectively, and ‘k’ 

represents the land use category. 

 

3. Results and Discussion 

3.1. Land Use and Land Cover Change in Mathioya 

Watershed  

During the study period (1987–2020), forestland and 

agricultural land were the predominant LULC classes 
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in the watershed (Fig. 2). In 1987, agricultural land, 

forest land, wetlands, water bodies, built-up areas and 

barren land covered 42%, 44%, 5%, 5%, 2.4% and 2%, 

respectively (Table 6). There was a decrease in the area 

covered by forest land (34%), wetlands (45%) and 

water bodies (50%) between 1987 and 2020. On the 

other hand, built-up area and agricultural area 

increased by 85% and 43%, respectively in the same 

period. The overall classification accuracies were 87%, 

92%, 85% and 88%, in 1986, 1997, 2007 and 2020, 

respectively, with Kappa indexes of 0.8454, 0.8632, 

0.9058 and 0.8519, respectively. A Kappa index 

greater than 0.8 shows a strong level of agreement 

(Table 3) between the classified maps and what is on 

the ground.

 

 
Fig. 2: Land Use and Land Cover Maps in Mathioya Watershed (1987-2020) 

 

Table 6: LULC Change Trend in Mathioya Watershed 

 

LULC 

class                  

Area (Km2) % change in LULC   

1987 1997 2007 2020 (1987-2020) 

FL 236 223 188 157 -34 

AL 226 238 279 323 43 

WL 29 26 22 16 -45 

WB 26 23 18 13 -50 

BL 11 15 16 8 -27 

BA 13 16 18 24 85 

Total      541    541     541      541  

FL-Forest land, AL-Agricultural land, WL-Wetland, WB-Water bodies, BL- Barren land, BA-Build-up area 

 

The results of the change detection analysis show that 

LULC change occurred across the 33-year study period 

(1987 - 2020). Agriculture was the most common land 

use in the Mathioya watershed. Ground truthing 

confirmed that agricultural land was expanding at the 

expense of forests and wetlands. In Kenya, agricultural 

policy is mainly focused on increasing production and 

income for the smallholder famers. Little attention is 

paid to the environmental consequences of 

unsustainable agricultural practices. For instance, the 

Kenyan government introduced the Shamba system to 

support the growth of monoculture seedlings [26]. The 

system involved smallholder farmers growing perennial 

crops in state-owned forests. Even though the system 

benefited the farmers, it resulted to massive loss of 

forestland, particularly in Central Kenya [26]. Indeed, 
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agriculture was the major contributor to the net change 

in forest land (Fig. 3) A study [14] reported that 

forestland and wetlands were being converted into 

agricultural lands. Similarly, [15] found that in the 

period between 1990 and 2000, wetlands decreased by 

an area of 1012.96 ha, whereas agricultural land 

increased by an area of 338.94 ha. 

Built-up area increased along the major roads and in 

towns, mainly Murang’a town, Kangema and Gitugi. 

Increase can be linked to the rise in population in the 

region. In 2009, the population in the watershed was 

197, 465 (365 persons/ km2) and it increased to 226, 679 

(419 persons/ km2) in 2019. This has led to clearing of 

forests for settlement, increased demand for timber and 

agricultural produce. In addition, the area has benefited 

from increased tarmac roads in 2020 compared to 1987 

where most roads were not tarmacked. From a related 

study [15], built-up area increased from 52.46 ha in 

1990 to 581.18 ha in 2017. This change was attributed 

to an increase in population in the region. Substantial 

increase in the area covered by built-up area (from 

761.67 ha in 1991 to 7,999.56 ha in 2015) was reported 

in a related study [14]. 

  

 
Area (km2) 

Fig. 3: Contribution to Net Change in Forest land 

 

The decrease in water bodies over the years was 

likely due to increased pressure from agriculture [27] 

and construction activities. Additionally, most of the 

small streams within the watershed had dried up. Barren 

land increased between 1987 and 2007. This could be 

attributed to deforestation within the watershed and 

increase in quarrying activities. However, the area 

under barren land decreased between 2007 and 2020. 

This was caused by the conversion of barren land to 

built-up areas and agricultural lands (Fig. 4). 

Additionally, some of the quarries were rehabilitated by 

planting of trees and grasses. Similarly, a study [20] 

found that the area under bare soil increased from 

780.84 ha in 1978 to 2734.56 in 1999, then between 

1999 to 2017, the area under bare soil decreased to 

591.28 ha. 

In 1987, wetlands covered 29 km2 of the watershed. 

However, in 2020, wetlands only covered 16 km2. The 

loss of wetlands is likely associated to their rapid 

conversion into agricultural land and other land use 

classes (Fig. 5). Agriculture and built-up area were the 

major contributors to wetland loss (Fig. 6). More than 

60% of wetland area was converted to agricultural lands 

between 1987 and 2020. In addition, 29% and 3% of the 

wetland area was lost to built-up area and forest land, 

respectively. Because wetlands are moist for the 

majority of the year and have higher soil fertility than 

adjacent areas, they have a lot of potential for 

agricultural growth and intensification [28]. In addition, 

most of the wetlands in Mathioya watershed occur in 

private land. This makes it difficult for the relevant 

authorities to conserve the wetlands [12].  

Loss of wetlands will result to a decline in the quality 

and quantity of water available in the study area. 

Consequently, the livelihood of communities living 

adjacent to the wetlands will be affected. The observed 

trend is consistent with the findings of [29], who 

determined that land use changes in Malawi's Likangala 

River basin were caused by farming along river banks, 

deforestation, and over-exploitation of natural 

resources. People are motivated to farm in marginal 

terrain such as hill slopes, riverbanks, and wetlands due 

to poverty and rising need for agricultural products [30]. 

Land clearance and drainage as a result of urbanization 

[31], agricultural expansion [32], and industrial 

development have resulted in wetlands decreasing 

globally in recent years. 

There are several laws seeking to protect wetlands 

and riparian lands in Kenya. The Water Act of 2002, the 

Water Resource Management Act of 2007, and the 

Environment Management and Regulations Act of 2006 

are among them. The laws, however, are in conflict with 
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one another. The Water Act, for example, calls for a 

minimum riparian distance of 6 meters, whereas the 

Agriculture Act calls for a minimum of 2 meters. The 

Environmental Management and Regulation Act, on the 

other hand, recommend a riparian buffer of 30 meters. 

The survey Act of 1989 recommends a riparian buffer 

of 10 meters. The Kenyan government, through the 

National Assembly, identified the need for a national 

policy framework after noting the inconsistencies in the 

wetland legislation. In 2014, the National Wetland 

Policy was developed as a result of this. However, the 

policy is yet to have an impact on small wetlands, which 

continue to be destroyed by human activities [15] 

 

Area (km2) 

Fig. 4: Contribution to Net Change in Barren land 

 

Fig. 5: Transition of Wetlands to Other Land Use and Land Cover Classes (1987-2020) 

 

Area (km2) 

 

Fig. 6: Contribution to Net Change in Wetlands 
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Further, the analysis reveals a spatial trend in the LULC 

changes in Mathioya watershed between 1987 and 

2020. Changes in the area covered by wetlands were 

mainly concentrated in the southeastern part of the 

watershed. Particularly, loss of wetlands to agriculture 

(Fig. 7) and built-up area (Fig. 8) took place in the 

southeast of the watershed. The southeastern part of 

Mathioya watershed is fairly flat compared to the other 

parts, which are mainly hilly. Hence, the section is more 

suitable for buildings and agricultural practices. The 

spatial trend of changes in the forest land to built-up 

area was also concentrated in the southeastern part of 

the watershed (Fig. 9). However, loss of forestland to 

agricultural land was more concentrated at the middle 

part of the watershed (Fig. 10). This can be attributed to 

the clearing of forest land to create space for the tea 

farms. It is important that in our quest to achieve 

economic and social stability, we also need to ensure 

that the environment is conserved. Hence, economic 

development should be carried out sustainably, in 

harmony with environmental and social development. 
 

 

 
Fig. 7: Spatial Trend of LULC Change from Wetlands to Agricultural land 

 

 
Fig. 8: Spatial Trend of LULC Change from Wetlands to Built-up area 

 

 
Fig. 9: Spatial Trend of LULC Change from Forest land to Built-up area 
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Fig. 10: Spatial Trend of LULC change from Forest land to Agricultural land 

 

3.2. Ecosystem Service Value Change in Mathioya 

Watershed 

The ESV declined within the study area, for each study 

period. LULC changes reduced the ESV by 2.6%, 3.1%, 

2.8% and 8.5%, between 1987-1997, 1997-2007, 2007-

2020 and 1987-2020, respectively. Forestland recorded 

the highest decrease in ESV between 1987 and 2020. 

This was closely followed by wetlands. The least 

decrease in ESV was recorded for the waterbodies. On 

the other hand, agricultural land registered the highest 

increase in ESV followed by built-up area which had a 

slight increase in the ESV (Table 7). 

Forestland and wetlands showed the highest loss due 

to the high ESV attached to them, alongside their 

continued exploitation by human beings. Specifically, 

wetlands play a significant role to the surrounding 

ecosystem. This includes, flood mitigation, increase 

groundwater recharge, improving of the water quality 

by capturing sediments and filtering pollutants. 

However, despite the critical roles wetlands play, they 

still registered the highest loss in ESV after forestland. 

Also, even though wetlands cover a small area within 

the Mathioya watershed, the total amount of ESV lost 

indicates the critical roles they play in providing 

ecosystem services. Thus, it is critical that the 

protection and possible restoration of degraded 

wetlands be given priority in Mathioya watershed, 

where availability of water for drinking and farming is 

becoming an issue. 
 

Table 7: Total ecosystem service values estimated for each land use and land cover class, and changes between 1987 and 

2020 

LULC 

Class 

  ESV (US million ha-1 year-1) ESV change between periods  

1987 1997 2007 2020 1987-1997 1997-2007 2007-2020 1987-2020 

FL 127.0 120.0 101.2   84.5 -7(-6) -18.8(-16) -16.7(-17) -42.5(-34) 

AL 125.8 132.5 155.3 179.8  6.7(5)   22.8(17)   24.5(16)  54(43) 

WL   74.5   66.8   56.5   41.1 -7.7(-10)  -10.3(-15)  -15.4(-27) -33.4(-45) 

WB   32.5   28.8   22.5   16.3 -3.7(-11)    -6.3(-22)    -6.2(-28) -16.2(50) 

BL    0     0    0     0  0     0     0    0 

BA     8.7   10.7   12.0   16.0  2(23)     1.3(12)     4(33)    7.3(84) 

Total 368.5 358.8 347.5 337.7 -9.7(-2.6) -11.3(-3.1) -9.8(-2.8) -30.8(-8.5) 

FL-Forest land, AL-Agricultural land, WL-Wetland, WB-Water bodies, BL- Barren land, BA-Build-up area 

NB: The values in parenthesis () shows the percentage change in ESV between periods. 

 

Provisioning services increased whereas supporting, 

cultural and regulatory services decreased between 

1987 and 2020 in the study area (Table 8). For instance, 

food production increased by 34%, whereas, water 

regulation and climate regulation declined by 48% and 

16%, respectively. The decrease of the mentioned 

services can be attributed to the loss of natural 

ecosystems such as forests and wetlands. Whereas, the 

increase in provisioning services is attributed to the 

expansion in agricultural area. However, the 

provisioning service depends on both regulating and 

supporting services [7] and hence it would be affected 

in the long run, due to the continued decline in the 

regulatory and supporting services. Generally, the total 

ESV decreased in the study area within the 33 year 

study period.  

In a similar study done in Ethiopia, a total of $ 43.7 

million/ha/year ESV was lost between 1973 and 2017 

due to land use and land cover changes [6]. Similarly, a 

study [8] reported that the reduction of ESV was due to 

the modification of natural ecosystems such as wetlands 

and forestlands into agricultural lands and built-up 

areas. The loss of the natural ecosystems would 

translate to loss of critical ecosystem services which 
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may affect human wellbeing [33] especially in the 

developing countries that are experiencing exponential 

economic growth. Particularly, growing of crops in the 

wetlands during the dry seasons affects wetland 

functions in the Mathioya watershed and the Murang’a 

County in general. This will eventually result to poor 

water quality within the watershed and the entire 

County, thus impacting negatively on the health of the 

locals. 

The current trend of LULC change in Mathioya 

watershed indicates a continued loss of wetlands. This 

shows that the ecosystem services provided by wetlands 

will continue to be lost, and the cost of restoring the 

degraded wetlands is likely to be much higher compared 

to the benefits being derived from their current unwise 

use [6]. Additionally, lack of appropriate mechanism in 

payment for ecosystem services due to limited 

knowledge on ecosystem services of wetlands, further 

hampers their protection [25]. Therefore, there is an 

urgent need to make informed decision on the 

protection of the remaining wetlands to prevent further 

decline in the ESV [8]. In a related study conducted in 

India, a net loss of ESV ($ 1.2 trillion/year) was reported 

between 1995 and 2015 [33]. The loss of ESV was 

attributed to the decline of forestland and wetlands. The 

study also reported an increase in ESV for both cropland 

and urban coverage, whereas, a decline in ESV was 

recorded for forestland and wetlands. A similar study 

conducted in India found that the ESV would decline by 

29.7% between 2020 and 2030, particularly due to the 

loss of wetlands [19] 

 

.Table 8: Estimated Annual Value of Ecosystem Services (ESV in US$ million per year) 

Ecosystem service ESV1987 ESV1997 ESV2007 ESV2020 ESV1987-2020  

Climate regulation 60.1 58.1 52.6 50.7 -9.4(-16) 

Water supply 15.6 15.3 15.8 16.4 0.8(5) 

Water regulation 36 32.1 26.1 18.9 -17.1(-48) 

Soil formation 12.9 13 15.1 17.4 4.5(35) 

Erosion control 17.9 16.8 15.1 12.9 -5(-28) 

Pollination 1.2 1.2 1.2 1.2 0(0) 

Food production 59.3 61.6 70.1 79.3 20(34) 

Erosion control 17.9 16.8 15.1 12.9 -5(-28) 

Nutrient cycling 7.7 4.5 3.9 2.8 -4.9(-64) 

Disruption regulation 10.2 9.3 7.8 5.8 -4.4(-43) 

Gas regulation 0.3 0.3 0.3 0.2 -0.1(-33) 

Biological control 3.8 3.5 3.2 2.8 -1(-26) 

Waste treatment 22.9 22.1 21.6 20.7 -2.2(-10) 

Habitat 8.1 7.3 6.2 4.6 -3.5(-43) 

Raw material 8.5 8.5 8.9 9.3 0.8(9) 

Genetic resource 59.2 58.5 57.3 57.1 -2.1(-4) 

Recreation 41.8 41.2 37.7 36.4 -5.4(-13) 

Cultural 5.9 5.3 4.5 3.3 -2.6(-44) 

NB: The values in parenthesis () shows the percentage change in ESV between periods. 

 

All the LULC classes recorded a coefficient of 

sensitivity (CS) that is less than one in each year (Table 

9). When the ratio of the percentage change in the 

estimated total ecosystem service value (ESV) to the 

percentage change in the adjusted valuation coefficient 

(VC) is more than one, the estimated ecosystem value 

is said to be elastic. If the ratio is smaller than one, the 

estimated ESV is considered inelastic [6]. The high 

value of CS recorded for agricultural land is an 

indication of the large area occupied by this land use 

within the watershed. Further, adjustment of the ESV of 

agricultural land by ±50% resulted to an increase in the 

ESV by 27% in 2020. On the other hand, a decrease in 

the ESV of forestland and wetlands by ±50% resulted to 

a decrease in ESV by 13% and 6%, respectively in 2020. 

CS values being less than one implies that the estimated 

ESVs were inelastic to the ESV coefficients proposed 

by [1]. Additionally, the results show that the proxies 

adopted for the different LULC classes are reliable [6]. 

Other similar studies also recorded a CS value of less 

than one [8], [6], [7], [25].  
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Table 9: Change in Total Estimated Ecosystem Services and Coefficient Sensitivity (CS) after Adjusting Ecosystem 

Services Valuation Coefficient (VC) in Mathioya Watershed 

*Change in 

valuation coefficient 

1987 1997 2007 2020 

Percent CS Percent CS Percent CS Percent CS 

Forestland ±17 0.34 ±17 0.33 ±15 0.29 ±13 0.25 

Agricultural land ±17 0.34 ±19 0.37 ±22 0.45 ±27 0.53 

Wetlands ±10 0.20 ±9 0.19 ±8 0.16 ±6 0.12 

Water bodies ±4 0.09 ±4 0.08 ±3 0.06 ±2 0.05 

Built-up area ±4 0.07 ±2 0.03 ±2 0.03 ±2 0.05 

 *All the LULC classes were adjusted with a value coefficient (VC) of ±50% 

 

4. Conclusion The study has revealed that land use and land cover 

changes 

have an effect on the availability of ecosystem service 

value. Further, the findings show that the ecosystem 

service value is declining within the watershed, an 

indication of environmental degradation within the 

watershed. Loss of ecosystem service values will have 

detrimental impact on the health and livelihood of 

communities living within the watershed and entire 

Murang’a County. Changes in land use and land cover 

were observed within the 33 year period (1987-2020) in 

Mathioya watershed. Agricultural land, built-up area 

increased whereas, forestland, wetlands, waterbodies 

and barren lands decreased in size between 1987 and 

2020.  

Wetlands decreased considerably within the 

watershed. This was mainly due to conversion of 

wetlands into agricultural lands especially during the 

dry season. Additionally, some parts of the wetlands 

were reclaimed for purposes of construction of roads 

and residential buildings. The loss of wetlands resulted 

to a decline in the overall ecosystem service value as 

well as a decrease in the supporting and regulating 

services. Provisioning services increased owing to the 

increase in agricultural land, but these are likely to be 

hampered in the long run owing to its dependence on 

the regulating and supporting services. There is a need 

to protect the natural ecosystems which are on a steady 

decline within the watershed. Continued loss of the 

natural ecosystems such as wetlands will result to a 

further loss of the ESV within Mathioya watershed. 

Thus, urgent measures need to be taken to curb the 

current trend and ensure the already degraded 

ecosystems have been restored.   
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Table S5: Categories of ecosystem services, LULC types and ESV coefficients (million USD $ /ha/yr) 

 

Ecosystem services Agricultural land  Forest land  Built-up area Wetlands Water body Barren land 

Categories Individuals        

Provisioning Water supply 400 27  408 1808 0 

 Food production 2323 200  614 106 0 

 Raw material 219 84  539  0 

 Genetic resources 1042 1517  99  0 

 Sub-Total 3984 1828  1660 1914 0 

Regulating Gas regulation  12    0 

 Climate regulation 411 2044 905 488  0 

 Disturbance regulation  66  2986  0 

 Water regulation  8 16 5606 7514 0 

 Erosion control 107 337  2607  0 

 Waste treatment 397 120  3015 918 0 

 Biological control 33 11  948  0 

 Sub-Total 948 2598 921 15650 8432 0 

Supporting Soil formation 532 14    0 

 Nutrient cycling  3  1713  0 

 Pollination 22 30    0 

 Habitat  39  2455  0 

 Sub-Total 554 86  4168  0 

Cultural Recreation 82 867 5740 2211 2166 0 

 Cultural  2  1992  0 

 Sub-Total 82 869 5740 4203 2166 0 

 TOTAL 5,568 5,381 6,661 25,681 12,512 0 

Source: [1] 

 


