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Abstract: In this paper we practically deal with the problem of factorizing large integers. The various
algorithms that have been proposed are not efficient that is they do not run in polynomial time. We use
the algebraic approach proposed by Wanambisi et al [1]. We define a large integer based on the number
of digits and seek to decompose these numbers based on place values.
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1.0 Introduction

This section discusses the concept of a large csiepdhe basic concepts, the trends in differerices
primes and the basics of the algebraic approach.

1.1 Large composite integers

The question of what is and what is not a largegat cannot be addressed at once. We pose theéoquest
how large is a large integer. Considering the R8®A&which is a 232- digit is a large enough integdre
referred to as a large integer? The answer is noatVebout if we added to it just one more decinigit d
then clearly we get a larger number and addingg siill gives us still larger integers. The finstmber
with more than a thousand digits known to be primas Ma42sa The largest number on that list was found
on 2003-Nov-17. This number has 6, 320, 430 digits.

Now large composite integers are hard to facta@imply there is no known algorithm that can fadtem

in polynomial time. This is of course the basisrafst cryptosystem. So this problem acts as a pkdiad
locks up most of the world’s money and secretsc&ino one break down the integer problem in the
background then the information in the backgrouahot be accessed.

Is there therefore no answer to the questions: ventite largest integer known? Or is there a litmithe
size of a large integer which can be used in ciyatphic primitives?

Definition 1: In this paper a composite integer is a numbet pq wherep andq are large primes.

Definition 2: A large primep is any number divisible only by one and itselflwitumber of decimal digits
() greater than or equal to 5.
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Definition 3: A large composite integer is a composite integet pg where botlp, g are of decimal digit
lengthl > 5.

Definition 4: Large composite integer factorization is the preagfdactorizing a large composite integer.

2.0 The Basic concepts
2.1 Theorem (Fundamental Theorem of Arithmetic)

Every number greater than 1 factors into a prodéigrimesn = p;p, ... ps. Further, writing the primes in
ascending ordey; < p, < -+ < p, makes the factorization unique.

We will break the proof of the Fundamental Theoieta a sequence of Lemmas [5]
2.2 Lemma (Euclid’'s Lemma)
If p is a prime ang|ab, then p|a orp|b.

Proof

Assume thap|ab. If p|a then we are done, so suppose that it does not £ejcd , a). Note thatt > 0,
and thatc|p andc|a. Since c|p we have that = 1 orc = p. If ¢ = p thenp|a, which we assumed was not
true. So we must have= 1. Hence gcdp( a) = 1 andp|ab. Thus p|b [5].

2.3 Lemma
Let p be prime. Lety,a,,..,a,,n =1, be integers. Ipla,a, ...a,, then pla; for at least ond €
{1,2,..n}.

Proof

We use induction om. For then = 1 base case the result is clear. For the indeicttep, assume the
inductive hypothesis: that the lemma holds flosuch thatl < k <n. We must show that it holds for
n =k + 1. Assume thap is prime and thatp|a,a, ...apa;.,. Write a,a, ...a;, asa, anday,, ash.
Thenpla orp|b. If pla = a, ...a, then by the induction hypothesig|a; for somei € {1,2,..k}. If p| b
thenp|a, .. SO we can say that|a; for somei € {1,2,..k + 1}. This verifies the lemma fot = k + 1.
Hence by mathematical induction, it holds forralt 1[5].

2.4 Lemma (Fundamental Theorem, Existence)
If n> 1 then there exist primes, ..., p;, wheres > 1, such thak = p;p, ...p; andp; <p, < -+ < p;.

Proof

We will use induction om. The base step i$= 2: in this case, since 2 is prime we can takel and

p1 = 2. For the inductive step, assume the hypothesistiiegalemma holds fo2 < k < n; we will show
that it holds forn = k + 1. If k + 1is prime thens = 1 andp, = k + 1. If k + 1 is composite then write
k+1=ab wherel<a<k+1 and1<b<k+1. By the induction hypothesis there are primes
p1, -, Py @ndqy, ..., q, such thata = p, ...p,andb = q, ...q,. This gives thak + 1 is a product of primes
k+1=ab=pp;.-Pu%19: -9, Wheres =u + v. Reorder the primes into ascending order, if nesgs
The base step and the inductive step togetherugitkat the statement is true forrak 1 [5].

2.5 Lemma (Fundamental Theorem, Uniqueness)
If n=pp,..ps fors =1 withp, <p, <--- <pg, and alsor = q,q; ...q, fort =2 1 withg, < g, < - <
q:, thent=s, andp; = q; for alli € [1, s] [5].

This result can as well be proved by mathematiwliction [5].
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3.0The algebraic approach

3.1 Twin primes

Twin primes have a difference of 2. Thupiaindqg are any two consecutive twin primes then the prbduc
pqcan be given byn — 1)(n + 1). Now consider a composite integer = pq that is a product of twin
primes. Then

m—-1DMn+1)=m

n+1=m
n=+vm+1

Taking the appropriate value fo be approximatelp thenq follows at once [1].

3.2 Blum integers

A Blum integer is a composite integer that is adoiei of two primes both congruent to 1 modulo 4e Th
difference between any two such consecutive prisds Thus ifp andq are two primes both congruent to
1 modulo 4, then

lp—ql =4
Therefore if we lep to be say-2 andq to be sayn+2, then a Blum integen = pg

nm-2)(n+2)=m

n?—4=m
n> =m+4
n=zxVvm+4

An appropriate value ai gives us approximate andq hence the prime factors of our composite integer

[1].
3.3 0ther composite integers

In this section we consider other composite integdnich are products of primes with difference$ 08,
10, 12, 14, 16 e.t.c. now just like the case ofrTamd Blum integers, ifr = pq is any composite integer,
with difference of say 6, then clearly

lp—ql=6
Thus if we letp = n — 3 andqg = n + 3 then a composite integet = pq

n-3)(n+3)=m

Thereforen = +vm + 9

An appropriate value af gives approximate values of the prime factordhefdomposite integer [1].
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For any general composite integer= pq, with the differencdp — q| the prime factors are approximately

Using the relation (3), we can obtain prime factoffeomposite integers on condition that the inteégea
product of two primes no matter how large. This etreduces the steps that lead to factorizatioa of
large integer to say polynomial time. If for example take the case of RSA cryptosystem which isdas
on the prime factorization problem in which thenpes are relatively close, the steps taken to aaivbe
prime factors are greatly reduced. This then caddme in polynomial time [1].

4.0Cryptographic security

The Rivest, Shamir, Adleman (RSA) cryptosystemrisegample of gublic key cryptosystem. RSA uses
apublic key to encrypt messages and decryption is performedy @ correspondingrivate key. We can
distribute our public keys, but for security reasove should keep our private keys to ourselves. likes
the RSA, most of the existing cryptographic prires draw their security from the hardness of coritpos
integer factorization. Say for large integer= pq, the choice of numeric values ferandq for the
remainder of this paper, always bearing in mind thay have been chosen for illustrative purposeg.o
Refer [2], [3] and [4] for in-depth discussionsthie security of RSA, or consult other specializeds.

For RSA, we can compute the valpém) for arbitrarily large prime numbegsandg, this can take an
enormous amount of time. Indeed, the private key lma quickly deduced from the public key once you
know @(m), so it is an important part of the security of tREA cryptosystem thai(m) cannot be
computed in a short time, if onhg is known. On the other hand, if the private keyhar factorization of n

is available, we can compuggm) = (p — 1)(q — 1) in a very short time [6].

5.0 Factoring large composite integers

This section contains results of this research. ahall use the terms factorization and decomposition
interchangeably because we are dealing with nuntbatgproducts of only two primes.

5.1 Proposition 1

Let m = pq be a large composite integer of decimal digit tarig= 5 and differencdp — q| denoted as

2
d = 0, then the prime factons andq are approximately = q =+ |m + (g)

Consider the integer = 21, though not necessarily large as suggested in dpempbut for purposes of
illustrating the above proposition we have the jriiectors as:

p=i\/?(§)2

p = V25 = +5

Now taking the positive square root and addingmtracting‘;— we obtain
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5.2 Large integers that are used in cryptographic pmitives
5.2.1 Mersenne primes

A prime number of the formd,, = 2" — 1,n > 2, is a Mersenne prime. Consider the RSA public kéi w
m = p.q wherep andq are both Mersenne primes. With= 68718821377. We want to find the prime
factors ofm, applying the proposition 1 we have

393216\2
p =+ [68718821377 + ( )

93216

Evaluating this and adding and subtracting theer > ) yields values approximately

p = 524287 andq = 131071

With the factorization determining(m) = (p — 1)(q — 1) is easy.

5.2.2 Blum integers

Unlike Mersenne primes, Blum integers have pretietalifferences between consecutive primes, to be
precise 4. Any other difference will be a multigi&4. Applying proposition 1 om = pq such asn =
62393801

Here we check for the difference 4 and if it doegive us the solution, we return and pick the next
multiple of 4; we do this until we obtain the difésce that gives a solution. That is in this caBe 4
Substituting we obtain:

2

40
p= i\/62393801 + (7)

Evaluating this equation we get the valuep ahdq as 7879 and 7919.
5.2.3 Twin primes

Just like the Blum integers, differences betweemseoutive Twin primes are predictable and factoring
similar to that of Blum integers replacing the eitnce 4 with 2.

6.0 Conclusion
Assuming tham is the product of two odd primgsandq between 1 andl, the Algebraic approach which

utilizes the prime differences as presented ini@ec3.3 makes no more thagrsteps since there alé:e

differences. Hence takeis(g)steps. The algorithm can take even fewer stepsite given above since

the differences repeat themselves. A study | hagexl out on the prime differences reveals thahm
first 1000 primes, the maximum difference is 14wrtaking the even numbers between 1 and 14 we have

43



International Journal of Mathematics and StatisBtiglies
Vol. 1, No.1, March 2013, pp. 39-44

Published by European Centre for Research TraamgDevelopment, UK (www.ea-journals.org)

only 7! This shows that if we are dealing with reducts of consecutive primes then it will takeeeord
maximum 7 steps to achieve the prime factors!

The complication comes in when the primes are pnosecutive. This means that each of the differences
has to have its multiples worked out and each efntitested to establish the difference between pacte.
Since the multiples are even then all even numbarsbe checked between 1 aNdThis brings the

. N
number of steps to a maximum 9]‘
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