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Abstract: In this paper we practically deal with the problem of factorizing large integers. The various 
algorithms that have been proposed are not efficient that is they do not run in polynomial time. We use 
the algebraic approach proposed by Wanambisi et al [1]. We define a large integer based on the number 
of digits and seek to decompose these numbers based on place values. 
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1.0 Introduction  

This section discusses the concept of a large composite, the basic concepts, the trends in differences in 
primes and the basics of the algebraic approach. 

1.1 Large composite integers  

The question of what is and what is not a large integer cannot be addressed at once. We pose the question 
how large is a large integer. Considering the RSA-2048 which is a 232- digit is a large enough integer to be 
referred to as a large integer? The answer is no! What about if we added to it just one more decimal digit 
then clearly we get a larger number and adding a digit still gives us still larger integers. The first number 
with more than a thousand digits known to be prime was M4253. The largest number on that list was found 
on 2003-Nov-17. This number has 6, 320, 430 digits. 
 
Now large composite integers are hard to factor or simply there is no known algorithm that can factor them 
in polynomial time. This is of course the basis of most cryptosystem. So this problem acts as a padlock that 
locks up most of the world’s money and secrets. Since no one break down the integer problem in the 
background then the information in the background cannot be accessed. 

Is there therefore no answer to the questions: what is the largest integer known? Or is there a limit to the 
size of a large integer which can be used in cryptographic primitives?  

Definition 1: In this paper a composite integer is a number � = �� where p and q are large primes. 

Definition 2: A large prime p is any number divisible only by one and itself with number of decimal digits 
(l) greater than or equal to 5. 
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Definition 3: A large composite integer is a composite integer � = �� where both p, q are of decimal digit 
length l ≥ 5. 

Definition 4: Large composite integer factorization is the process of factorizing a large composite integer.   

2.0  The Basic concepts 

2.1 Theorem (Fundamental Theorem of Arithmetic)  

Every number greater than 1 factors into a product of primes � = ���� …��. Further, writing the primes in 
ascending order �� ≤ �� ≤ ⋯ ≤ �� makes the factorization unique. 
 
We will break the proof of the Fundamental Theorem into a sequence of Lemmas [5] 
 2.2 Lemma (Euclid’s Lemma) 
 If � is a prime and� �|��, then � �|� or� �|�. 
 
Proof   
Assume that� �|��. If � �|� then we are done, so suppose that it does not. Let c = gcd (p, a). Note that c > 0, 
and that � 	|� and� 	|�. Since � 	|� we have that c = 1 or c = p. If c = p then� �|�, which we assumed was not 
true. So we must have c = 1. Hence gcd (p, a) = 1 and� �|��. Thus � �|� [5]. 
 
2.3 Lemma  
Let p be prime. Let ��,��, … ,��,� ≥ 1, be integers. If� �|���� …��, then � �|�� for at least one 
 ∈�1,2, . .��. 
 
Proof   
We use induction on n. For the n = 1 base case the result is clear. For the inductive step, assume the 
inductive hypothesis: that the lemma holds for n such that 1 ≤ 
 ≤ �. We must show that it holds for � = 
 + 1. Assume that p is prime and that � �|���� … ������. Write ���� … �� as a, and ���� as b. 
Then� �|� or� �|�. If � �|� = �� … �� then by the induction hypothesis, � �|��  for some 
 ∈ �1,2, . .
�. If p | b 
then� �|����. So we can say that � �|�� for some 
 ∈ �1,2, . .
 + 1�. This verifies the lemma for � = 
 + 1. 
Hence by mathematical induction, it holds for all � ≥ 1[5]. 
 
 2.4 Lemma (Fundamental Theorem, Existence) 
 If n > 1 then there exist primes ��, … ,��, where � ≥ 1, such that � = ���� …�� and �� ≤ �� ≤ ⋯ ≤ ��. 
 
Proof   
We will use induction on n. The base step is n = 2: in this case, since 2 is prime we can take s = 1 and �� = 2. For the inductive step, assume the hypothesis that the lemma holds for 2 ≤ 
 ≤ �; we will show 
that it holds for � = 
 + 1. If 
 + 1is prime then s = 1 and �� = 
 + 1. If 
 + 1 is composite then write 
 + 1 = �� where 1 < � < 
 + 1 and 1 < � < 
 + 1. By the induction hypothesis there are primes ��, … ,�� and ��, … , �	 such that � = �� …��and � = �� … �	. This gives that k + 1 is a product of primes 
 + 1 = �� = ���� … ������ … �	, where s = u + v. Reorder the primes into ascending order, if necessary. 
The base step and the inductive step together give us that the statement is true for all n > 1 [5]. 
 
 2.5 Lemma (Fundamental Theorem, Uniqueness) 
If � = ���� … �� for � ≥ 1 with �� ≤ �� ≤ ⋯ ≤ ��, and also � = ���� … �
 for � ≥ 1 with �� ≤ �� ≤ ⋯ ≤�
, then t = s, and �� = �� for all 
 ∈ [1, �] [5]. 
 
This result can as well be proved by mathematical induction [5]. 
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3.0 The algebraic approach 

3.1 Twin primes 

Twin primes have a difference of 2. Thus if p and q are any two consecutive twin primes then the product ��can be given by (� − 1)(� + 1). Now consider a composite integer � = �� that is a product of twin 
primes. Then 

�� − 1��� + 1� = � �� + 1 = � � = ±√� + 1 

Taking the appropriate value of n to be approximately p then q follows at once [1]. 

3.2 Blum integers 

A Blum integer is a composite integer that is a product of two primes both congruent to 1 modulo 4. The 
difference between any two such consecutive primes is 4. Thus if p and q are two primes both congruent to 
1 modulo 4, then 

|� − �| = 4 

Therefore if we let p to be say n-2 and q to be say n+2, then a Blum integer � = �� 

�� − 2��� + 2� = � �� − 4 = � �� = � + 4 � = ±√� + 4 

An appropriate value of n gives us approximate p and q hence the prime factors of our composite integer 
[1]. 

3.3 Other composite integers 

In this section we consider other composite integers which are products of primes with differences of 6, 8, 
10, 12, 14, 16 e.t.c. now just like the case of Twin and Blum integers, if � = �� is any composite integer, 
with difference of say 6, then clearly 

|� − �| = 6 

Thus if we let � = � − 3 and � = � + 3 then a composite integer � = ��  

�� − 3��� + 3� = � �� − 9 = � �� = � + 9 
Therefore  � = ±√� + 9 

An appropriate value of n gives approximate values of the prime factors of the composite integer [1]. 
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For any general composite integer � = ��, with the difference |� − �| the prime factors are approximately 

� = ±�� + �|�
�|
�

��                                    

Using the relation (3), we can obtain prime factors of composite integers on condition that the integer is a 
product of two primes no matter how large. This method reduces the steps that lead to factorization of a 
large integer to say polynomial time. If for example we take the case of RSA cryptosystem which is based 
on the prime factorization problem in which the primes are relatively close, the steps taken to arrive at the 
prime factors are greatly reduced. This then can be done in polynomial time [1]. 

4.0Cryptographic security 

The Rivest, Shamir, Adleman (RSA) cryptosystem is an example of a public key cryptosystem. RSA uses 
a public key to encrypt messages and decryption is performed using a corresponding private key. We can 
distribute our public keys, but for security reasons we should keep our private keys to ourselves. Just like 
the RSA, most of the existing cryptographic primitives draw their security from the hardness of composite 
integer factorization. Say for large integer � = ��, the choice of numeric values for � and � for the 
remainder of this paper, always bearing in mind that they have been chosen for illustrative purposes only. 
Refer [2], [3] and [4] for in-depth discussions on the security of RSA, or consult other specialized texts. 

For RSA, we can compute the value �(�) for arbitrarily large prime numbers � and �, this can take an 
enormous amount of time. Indeed, the private key can be quickly deduced from the public key once you 
know  �(�), so it is an important part of the security of the RSA cryptosystem that �(�) cannot be 
computed in a short time, if only � is known. On the other hand, if the private key or the factorization of n 
is available, we can compute ���� = �� − 1�(� − 1) in a very short time [6]. 

5.0 Factoring large composite integers  

This section contains results of this research. We shall use the terms factorization and decomposition 
interchangeably because we are dealing with numbers that products of only two primes. 

5.1 Proposition 1 

Let � = �� be a large composite integer of decimal digit length � ≥ 5 and difference |� − �| denoted as 

� ≥ 0, then the prime factors � and � are approximately � = � = ±�� + ��
�
��    

Consider the integer � = 21, though not necessarily large as suggested in this paper but for purposes of 
illustrating the above proposition we have the prime factors as: 

� = ±�21 + �4

2
�� 

� = ±√25 = ±5 

Now taking the positive square root and adding or subtracting 
�

�
 we obtain 
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� = 3 and � = 7.  

5.2 Large integers that are used in cryptographic primitives  

5.2.1 Mersenne primes 

A prime number of the form �� = 2� − 1,� ≥ 2,  is a Mersenne prime. Consider the RSA public key with � = �. � where p and q are both Mersenne primes. With � = 68718821377. We want to find the prime 
factors of m, applying the proposition 1 we have 

� = ±�68718821377 + �393216

2
�� 

Evaluating this and adding and subtracting the value �������
�

� yields values approximately 

� = 524287 and � = 131071 

With the factorization determining ���� = �� − 1�(� − 1) is easy. 

5.2.2 Blum integers 

Unlike Mersenne primes, Blum integers have predictable differences between consecutive primes, to be 
precise 4. Any other difference will be a multiple of 4. Applying proposition 1 on � = �� such as � =

62393801 

Here we check for the difference 4 and if it doesn’t give us the solution, we return and pick the next 
multiple of 4; we do this until we obtain the difference that gives a solution. That is in this case 40. 
Substituting we obtain: 

� = ±�62393801 + �40

2
�� 

Evaluating this equation we get the values of p and q as 7879 and 7919. 

5.2.3 Twin primes 

Just like the Blum integers, differences between consecutive Twin primes are predictable and factoring is 
similar to that of Blum integers replacing the difference 4 with 2.  

 6.0 Conclusion 
Assuming that m is the product of two odd primes p and q between 1 and N, the Algebraic approach which 

utilizes the prime differences as presented in section 3.3 makes no more than 
�

�
steps since there are 

�

�
 

differences. Hence takes � ��
�
�steps. The algorithm can take even fewer steps the ones given above since 

the differences repeat themselves. A study I have carried out on the prime differences reveals that in the 
first 1000 primes, the maximum difference is 14; now taking the even numbers between 1 and 14 we have 
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only 7! This shows that if we are dealing with the products of consecutive primes then it will take a record 
maximum 7 steps to achieve the prime factors! 
The complication comes in when the primes are not consecutive. This means that each of the differences 
has to have its multiples worked out and each of them tested to establish the difference between each prime. 
Since the multiples are even then all even numbers can be checked between 1 and N. This brings the 

number of steps to a maximum of  
�

�
. 
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