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Abstract: We study a nonlinear Black-Scholes partial differential equation
whose nonlinearity is as a result of transaction costs that lead to market illiq-
uidity. After reducing the equation into a nonlinear parabolic porous medium
type equation, we find that the assumption of a traveling wave profile to the
porous medium type equation reduces it further to ordinary differential equa-
tions. Solutions to all these transformed equations together with the use of
localizing boundary conditions facilitate a twice continuously differentiable so-
lution to the nonlinear Black-scholes equation. We also find that the option is
always more volatile compared to the stock.
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1. Introduction

Two primary assumptions are used in formulating classical arbitrage pricing
theory: frictionless and competitive markets. There are no transaction costs
and restrictions on trade in a frictionless market. In a competitive market, a
trader can buy or sell any quantity of a security without changing its price.

The notion of liquidity risk is introduced on relaxing the assumptions above.
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The purpose of this paper is to obtain a particular solution of the nonlin-
ear Black-Scholes equation arising from transaction costs by Cetin et al in [2].
This is done by differentiating the equation twice with respect to the stock
price. After substitutions and transformations, we get a nonlinear parabolic
porous medium type equation. Assuming a traveling wave solution to the
porous medium type equation reduces it further to ordinary differential equa-
tions (ODEs). All these transformed equations are solved to obtain a particular
solution to the nonlinear Black-Scholes equation. A thorough analysis of this
Black-Scholes equation is found in [3].

This paper is organized as follows. Section 2 describes the modified op-
tion pricing theory. The solution to the nonlinear Black-Scholes equation is
presented in Section 3. Section 4 concludes the paper.

2. Modified Option Valuation Model

In this work, we will consider the continuous-time transaction-cost model for
illiquid markets by Cetin et al in [2]. Two assets are used in the model: a bond
(or a risk-free money market account with spot rate of interest r ≥ 0) whose
value at time t is Bt ≡ 1, and a stock. The stock is assumed to be risky and
illiquid while the bond is assumed to be riskless and liquid.

In the transaction-cost model, a fundamental stock price process S0
t follows

the dynamics
dS0

t = µS0
t dt+ σS0

t dWt, 0 ≤ t ≤ T,

where µ is drift, σ is volatility, T is time to expiry, andWt is the Wiener process.
When trading α shares, the transaction price to be paid at time t is

St(α) = eραS0
t , α ∈ R, (2.1)

where ρ is a liquidity parameter with ρ ≥ 0. It is obvious from equation (2.1)
that if ρ > 0 the trader will pay more than the fundamental price when buying
the stock (i.e. α > 0) and get less when selling (i.e. α < 0). Therefore, a
bid-ask-spread with size depending on α is essentially modeled by (2.1).

Taking the function φ(t, S0
t ) to be the number of shares traded rather than

held and identifying this function to be a trading strategy, then for a Markovian
trading strategy Φt = φ(t, S0

t ) for a smooth function φ = uS , we have φS = uSS .
If the stock and bond positions are Φt and βt respectively where Φt is a

semimartingale, then the paper value is given by

V M
t = ΦtS

0
t + βt.
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The change in the quadratic variation,

〈Φ〉 t =
∫ t

0

(

φS(τ, S
0
τ )σS

0
τ

)2
dτ,

is given by d 〈Φ〉 t =
(

uSS(t, S
0
t )σS

0
t

)2
dt since φS = uSS.

Applying Itô′s formula to u(t, S0
t ) gives

du(t, S0
t ) = uS(t, S

0
t )dS

0
t +

(

ut(t, S
0
t ) +

1
2σ

2(S0
t )

2uSS(t, S
0
t )
)

dt. (2.2)

Theorem A3 of [2] yields the wealth dynamics of a self-financing strategy as

dV M
t = ΦtdS

0
t − ρS0

t d 〈Φ〉 t
= uS

(

t, S0
t

)

dS0
t − ρσ2

(

uSS(t, S
0
t )
)2 (

S0
t

)3
dt

(2.3)

since Φt = φ(t, S0
t ) = uS and d 〈Φ〉 t =

(

uSS(t, S
0
t )σS

0
t

)2
dt. Uniqueness of semi-

martingale decompositions means that the dt-terms in (2.2) and (2.3) must
coincide. Equate these dt-terms. Applying a little algebra and then simplifying
we get

ut +
1
2σ

2S2uSS(1 + 2ρSuSS) = 0, u(S, T ) = h(ST ), (2.4)

where h(ST ) is a terminal claim whose hedge cost, u(St, t), is the solution
to (2.4). For instance the terminal condition for a European call option is given
by

u(S, T ) = max {S −K, 0} for S ≥ 0,

where K > 0 is the striking price. The boundary conditions for the option are
as follows:

u(0, t) = 0 for 0 ≤ t ≤ T,

u(S, t) ∼ S −Ke−r(T−t) as S → ∞.

We take the last condition to mean that

lim
S→∞

u(S,t)

S−Ke−r(T−t) = 1 (2.5)

uniformly for 0 ≤ t ≤ T .
The magnitude of the market impact is determined by ρS. Large ρ implies

a big market impact of hedging. If ρ = 0, the asset’s price follows the standard
Black-Scholes model in [1] with constant volatility σ.
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3. Solution to the Nonlinear Black-Scholes Equation

Lemma 3.1. If ν(ξ) is a twice continuously differentiable positive function,

and x and t are the spatial and time variables respectively, then there exists a

traveling wave solution to the porous medium type equation,

Vt +
σ2

2 (V Vx +
1
2V

2)x = 0 in R× [0,∞), (3.1)

of the form

V (x, t) = ν(ξ) where ξ = x− ct, ξ ∈ R (3.2)

for σ > 0 such that V = V (x, t) is a traveling wave of permanent form which

translates to the right with constant speed c > 0.

Proof. Applying the chain rule to (3.2) gives

Vt = −cν ′(ξ), Vx = ν ′(ξ), and Vxx = ν ′′(ξ),

where the prime denotes d
dξ
. Substituting these expressions into (3.1), we con-

clude that ν(ξ) must satisfy the nonlinear second order ODE

−cν ′ + σ2

2 (νν ′′ + (ν ′)2 + νν ′) = 0 in R (3.3)

and hence V solves (3.1).
Assume also that the travelling wave solution V (x, t) is localized. Then

lim
x→±∞

V (x, t) = lim
x→±∞

Vx(x, t) = lim
x→±∞

Vxx(x, t) = 0

or
lim

ξ→±∞
ν(ξ) = lim

ξ→±∞
ν ′(ξ) = lim

ξ→±∞
ν ′′(ξ) = 0. (3.4)

We can now solve (3.3) in a closed-form by first writing it as

d
dξ
(σ

2

2 νν ′ + σ2

4 ν2 − cν) = 0. (3.5)

Integrating (3.5) and rearranging gives the standard form (see [4])

ν ′ = 2
σ2ν

(cν − σ2

4 ν2 + κ), (3.6)

where κ is a constant of integration. From the localizing boundary condi-
tions (3.4), κ = 0. Simplifying (3.6) further we realize that ν(ξ) satisfies the
first order linear autonomous and separable ODE

−2dν
dξ

= ν − 4c
σ2 .
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A PARTICULAR SOLUTION OF A NONLINEAR... 719

Rearranging the equation above and integrating gives

ν(ξ) = e
ξ0−ξ
2 + 4c

σ2 , σ > 0, (3.7)

where ξ0 is a constant of integration. Hence,

V (x, t) = e
x0−(x−ct)

2 + 4c
σ2 , σ > 0, t ≥ 0, (3.8)

where x0 is a constant of integration given by

ξ0 = x0 − c · 0 = x0

as t = 0. It is obvious from equations (3.7) and (3.8) that ν(ξ) and V (x, t) are
positive functions.

Theorem 3.2. If V (x, t) is any positive solution to the porous medium

type equation

Vt +
σ2

2

(

V Vx +
1
2V

2
)

x
= 0 in R× [0,∞),

then

u(S, t) = S −
√
S0

ρ

(√
Se

σ2t
8 +

√
S0

4 e
σ2t
4

)

(3.9)

solves the nonlinear Black-Scholes equation

ut +
1
2σ

2S2uSS(1 + 2ρSuSS) = 0

for S0, S, σ, ρ > 0 and t ≥ 0, where S0 is the initial stock price.

Proof. To obtain the solution to equation (2.4) we differentiate it twice with
respect to S to get

wt +
σ2S2

2 (1 + 4ρSw)wSS + 2ρσ2S3w2
S + 2σ2S(1 + 6ρSw)wS

+ σ2(1 + 6ρSw)w = 0 in R+ × [0,∞),

where w = uSS.
Applying the transformations w = v

ρS
and x = lnS to the reaction-advection-

diffusion equation above and simplifying we get

vt +
σ2

2 (1 + 4v)vxx + 2σ2v2x +
σ2

2 (1 + 4v)vx = 0 in R× [0,∞). (3.10)

If we let v = V−1
4 then (3.10) reduces to equation (3.1).
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Hence, substituting v = V−1
4 into (3.8) gives the solution to (3.10) as

v(x, t) = 1
4e

x0−(x−ct)
2 + c

σ2 − 1
4 , σ > 0, t ≥ 0. (3.11)

Substituting w = v
ρS

and x = lnS into (3.11) gives

uSS = 1
ρS

(

1
4

√

S0
S
e
ct
2 + c

σ2 − 1
4

)

, ρ, c, S, S0, σ > 0, t ≥ 0. (3.12)

Since lnS0 = x0 ∈ R then S0 > 0.

We can rewrite equation (3.12) as

ρSuSS = 1
4

√

S0
S
e
ct
2 + c

σ2 − 1
4 . (3.13)

By localizing boundary conditions we get limS→±∞uSS(S, t) = 0. Since

limS→±∞uSS(S, t) = limS→±∞
1√
S
= 0,

equation (3.13) becomes c = σ2

4 > 0 after simplifying.

Plugging this value of c into (3.12) we obtain

uSS =
√
S0

4ρS3/2 e
σ2t
8 . (3.14)

Integrate (3.14) twice with respect to S. After a little algebra we get

u(S, t) = aS −
√
S0

ρ

(√
Se

σ2t
8 +

√
S0

4 e
σ2t
4

)

(3.15)

for S, S0, σ, ρ > 0, t ≥ 0 and a ∈ R.

Substituting equation (3.15) into (2.5) and simplifying the results gives
a = 1. Since a = 1 equation (3.15) reduces to (3.9).

Remark 3.3. From equation (3.9), it is clear that SuS
u

is always greater
than one as in [1]. This shows that the option is always more volatile than the
stock.
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4. Conclusion

We have studied the hedging of derivatives in illiquid markets. A model where
the implementation of a hedging strategy affects the price of the underlying
asset has been considered. Assuming the solution of a forward wave, a classi-
cal solution for the nonlinear Black-Scholes equation was found. The solution
obtained can be used for pricing a European call option at time t ≥ 0. This
solution supports the comments in [1] that the option is always more volatile
than the stock.

In conclusion, further research needs to be done to solve the nonlinear Black-
Scholes equation when r > 0. Future work will also involve finding solutions to
arbitrary portfolio of options with non-single-signed gamma.
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