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A NONLINEAR BLACK-SCHOLES EQUATION

Joseph Eyang’an Esekon

Department of Statistics and Actuarial Science
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P.O. Box 333, Maseno, KENYA

Abstract: We study a nonlinear Black-Scholes partial differential equation
whose nonlinearity is as a result of transaction costs that lead to market illiq-
uidity. After reducing the equation into a nonlinear parabolic porous medium
type equation, we find that the assumption of a traveling wave profile to the
porous medium type equation reduces it further to ordinary differential equa-
tions. Solutions to all these transformed equations together with the use of
localizing boundary conditions facilitate a twice continuously differentiable so-
lution to the nonlinear Black-Scholes equation. We also find that the option
is always more volatile compared to the stock. All the risk parameters except
Gamma are negative throughout time t.

AMS Subject Classification: 35K10, 35K55
Key Words: porous medium equation, analytic solution, illiquid markets,
transaction cost

1. Introduction

Two primary assumptions are used in formulating classical arbitrage pricing
theory: frictionless and competitive markets. There are no transaction costs
and restrictions on trade in a frictionless market. In a competitive market, a
trader can buy or sell any quantity of a security without changing its price.
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The notion of liquidity risk is introduced on relaxing the assumptions above.
The purpose of this paper is to obtain an analytic solution of the nonlinear

Black-Scholes equation arising from transaction costs by Cetin et al. in [3].
This is done by differentiating the equation twice with respect to the stock
price. After substitutions and transformations, we get a nonlinear parabolic
porous medium type equation. Assuming a traveling wave solution to the
porous medium type equation reduces it further to ordinary differential equa-
tions (ODEs). All these transformed equations are solved to obtain an analytic
solution to the nonlinear Black-Scholes equation. A thorough analysis of the
Black-Scholes equation is found in [4].

This paper is organized as follows. Section 2 describes the modified option
pricing theory. The solution to the nonlinear Black-Scholes equation is pre-
sented in Section 3. The Greek parameters are studied in Section 4. Section 5
concludes the paper.

2. Modified Option Valuation Model

2.1. Cetin et al. (2004)

In this work, we will consider the continuous-time transaction-cost model for
illiquid markets by Cetin et al. in [3]. Two assets are used in the model: a
bond (or a risk-free money market account with spot rate of interest r ≥ 0)
whose value at time t is Bt ≡ 1, and a stock. The stock is assumed to be risky
and illiquid while the bond is assumed to be riskless and liquid.

In the transaction-cost model, a fundamental stock price process S0
t follows

the dynamics
dS0

t = µS0
t dt+ σS0

t dWt, 0 ≤ t ≤ T,

where µ is drift, σ is volatility, T is time to expiry, andWt is the Wiener process.
When trading α shares, the transaction price to be paid at time t is

St(α) = eραS0
t , α ∈ R, (2.1)

where ρ is a liquidity parameter with ρ ≥ 0. It is obvious from equation (2.1)
that if ρ > 0 the trader will pay more than the fundamental price when buying
the stock (i.e. α > 0) and get less when selling (i.e. α < 0). Therefore, a
bid-ask-spread with size depending on α is essentially modeled by (2.1).

Taking the function φ(t, S0
t ) to be the number of shares traded rather than

held and identifying this function to be a trading strategy, then for a Markovian
trading strategy Φt = φ(t, S0

t ) for a smooth function φ = uS , we have φS = uSS .

https://www.researchgate.net/publication/23805276_Liquidity_Risk_and_Arbitrage_Pricing_Theory?el=1_x_8&enrichId=rgreq-7c53d0da60afba4f301ab018f92406f5-XXX&enrichSource=Y292ZXJQYWdlOzI2Njg2MDA5MztBUzozMzMzMTQ0NzgxMDA0ODBAMTQ1NjQ3OTc3MjAzNg==
https://www.researchgate.net/publication/23805276_Liquidity_Risk_and_Arbitrage_Pricing_Theory?el=1_x_8&enrichId=rgreq-7c53d0da60afba4f301ab018f92406f5-XXX&enrichSource=Y292ZXJQYWdlOzI2Njg2MDA5MztBUzozMzMzMTQ0NzgxMDA0ODBAMTQ1NjQ3OTc3MjAzNg==
https://www.researchgate.net/publication/23805276_Liquidity_Risk_and_Arbitrage_Pricing_Theory?el=1_x_8&enrichId=rgreq-7c53d0da60afba4f301ab018f92406f5-XXX&enrichSource=Y292ZXJQYWdlOzI2Njg2MDA5MztBUzozMzMzMTQ0NzgxMDA0ODBAMTQ1NjQ3OTc3MjAzNg==
https://www.researchgate.net/publication/266706320_Analytic_solution_of_a_nonlinear_Black-Scholes_partial_differential_equation?el=1_x_8&enrichId=rgreq-7c53d0da60afba4f301ab018f92406f5-XXX&enrichSource=Y292ZXJQYWdlOzI2Njg2MDA5MztBUzozMzMzMTQ0NzgxMDA0ODBAMTQ1NjQ3OTc3MjAzNg==


ANALYTIC SOLUTION OF... 549

If the stock and bond positions are Φt and βt respectively where Φt is a
semimartingale, then the paper value is given by

V M
t = ΦtS

0
t + βt.

The change in the quadratic variation,

〈Φ〉 t =
∫ t

0

(

φS(τ, S
0
τ )σS

0
τ

)2
dτ,

is given by d 〈Φ〉 t =
(

uSS(t, S
0
t )σS

0
t

)2
dt since φS = uSS.

Applying Itô′s formula to u(t, S0
t ) gives

du(t, S0
t ) = uS(t, S

0
t )dS

0
t +

(

ut(t, S
0
t ) +

1
2σ

2(S0
t )

2uSS(t, S
0
t )
)

dt. (2.2)

Theorem A3 of [3] yields the wealth dynamics of a self-financing strategy as

dV M
t = ΦtdS

0
t − ρS0

t d 〈Φ〉 t
= uS

(

t, S0
t

)

dS0
t − ρσ2

(

uSS(t, S
0
t )
)2 (

S0
t

)3
dt

(2.3)

since Φt = φ(t, S0
t ) = uS and d 〈Φ〉 t =

(

uSS(t, S
0
t )σS

0
t

)2
dt. Uniqueness of semi-

martingale decompositions means that the dt-terms in (2.2) and (2.3) must
coincide. Equate these dt-terms. Applying a little algebra and then simplifying
we get

ut +
1
2σ

2S2uSS(1 + 2ρSuSS) = 0, u(S, T ) = h(ST ), (2.4)

where h(ST ) is a terminal claim whose hedge cost, u(St, t), is the solution
to (2.4). For instance the terminal condition for a European call option is given
by

u(S, T ) = max {S −K, 0} for S ≥ 0,

where K > 0 is the striking price. The boundary conditions for the option are
as follows:

u(0, t) = 0 for 0 ≤ t ≤ T,

u(S, t) ∼ S −Ke−r(T−t) as S → ∞.

We take the last condition to mean that

lim
S→∞

u(S,t)

S−Ke−r(T−t) = 1 (2.5)

uniformly for 0 ≤ t ≤ T .
The magnitude of the market impact is determined by ρS. Large ρ implies

a big market impact of hedging. If ρ = 0, the asset’s price follows the standard
Black-Scholes model in [2] with constant volatility σ.
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2.2. Bakstein and Howison (2003)

A model for an illiquid market which results in the following PDE,

ut +
1
2σ

2S2uSS(1 + 2ρSuSS) +
1
2ρ

2(1− α)2σ2S4u3SS + rSuS − ru = 0 (2.6)

where ρ ∈ R is a measure of the liquidity of the market and α is a measure of the
price slippage impact of a trade felt by all market participants was developed
in Theorem 3.1 of [1].

When α = 1, this corresponds to no slippage and equation (2.6) reduces to
the model whose PDE is given by

ut +
1
2σ

2S2uSS(1 + 2ρSuSS) + rSuS − ru = 0, u(S, T ) = h(ST ).

This is the Cetin et al. (2004) model given in (2.4) with r > 0.

3. Solution to the Nonlinear Black-Scholes Equation

Lemma 3.0.1. If ν(ξ) is a twice continuously differentiable function, and

x and t are the spatial and time variables respectively, then there exists a

traveling wave solution to the porous medium type equation,

Vt +
σ2

2

(

V Vx +
1
2V

2 + 2r
σ2V

)

x
= 0 in R× [0,∞), (3.1)

of the form

V (x, t) = ν(ξ) where ξ = x− ct, ξ ∈ R (3.2)

for σ > 0 and r ≥ 0 such that V = V (x, t) is a traveling wave of permanent

form which translates to the right with constant speed c > 0.

Proof. Applying the chain rule to (3.2) gives

Vt = −cν ′(ξ), Vx = ν ′(ξ), and Vxx = ν ′′(ξ),

where the prime denotes d
dξ . Substituting these expressions into (3.1), we con-

clude that ν(ξ) must satisfy the nonlinear second order ODE

−cν ′ + σ2

2 (νν ′′ + (ν ′)2 + νν ′ + 2r
σ2 ν

′) = 0 in R (3.3)

and hence V solves (3.1).
Assume also that the travelling wave solution V (x, t) is localized. Then

lim
x→±∞

V (x, t) = lim
x→±∞

Vx(x, t) = lim
x→±∞

Vxx(x, t) = 0 (3.4)

https://www.researchgate.net/publication/23805276_Liquidity_Risk_and_Arbitrage_Pricing_Theory?el=1_x_8&enrichId=rgreq-7c53d0da60afba4f301ab018f92406f5-XXX&enrichSource=Y292ZXJQYWdlOzI2Njg2MDA5MztBUzozMzMzMTQ0NzgxMDA0ODBAMTQ1NjQ3OTc3MjAzNg==
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or from (3.2) the localizing boundary conditions (3.4) become

lim
ξ→±∞

ν(ξ) = lim
ξ→±∞

ν ′(ξ) = lim
ξ→±∞

ν ′′(ξ) = 0. (3.5)

We can now solve (3.3) in a closed-form by first writing it as

d
dξ (

σ2

2 νν ′ + σ2

4 ν2 − cν + rν) = 0. (3.6)

Integrating (3.6) and rearranging gives the standard form (see [6])

ν ′ = 2
σ2ν

(cν − rν − σ2

4 ν2 + κ), (3.7)

where κ is a constant of integration. From the localizing boundary condi-
tions (3.5), κ = 0. Simplifying (3.7) further we realize that ν(ξ) satisfies the
first order linear autonomous and separable ODE

−2dν
dξ = ν − 4

σ2 (c− r).

Rearranging the equation above and integrating gives

ν(ξ) = e
ξ0−ξ
2 + 4

σ2 (c− r) for c, σ > 0, r ≥ 0, and x ∈ R,

where ξ0 is a constant of integration. Hence,

V (x, t) = e
x0−(x−ct)

2 + 4
σ2 (c− r) (3.8)

for c, σ > 0, r, t ≥ 0, and x ∈ R, where x0 is a constant of integration given by

ξ0 = x0 − c · 0 = x0

as t = 0.

Theorem 3.0.2. If V (x, t) is any positive solution to the porous medium

type equation

Vt +
σ2

2

(

V Vx +
1
2V

2 + 2r
σ2V

)

x
= 0 in R× [0,∞),

then

u(S, t) = S −
√
S0
ρ

(

√
Se

(

r+σ2/4
2

)

t
+

√
S0
4 e(r+σ2/4)t

)

(3.9)

solves the nonlinear Black-Scholes equation

ut +
1
2σ

2S2uSS(1 + 2ρSuSS) + rSuS − ru = 0, u(S, T ) = h(ST ) (3.10)

for S0, S, σ, ρ > 0 and r, t ≥ 0, where S0 is the initial stock price.
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Proof. To obtain the solution to equation (3.10) we differentiate it twice
with respect to S to get

wt +
σ2S2

2 (1 + 4ρSw)wSS + 2ρσ2S3w2
S + 2σ2S(1 + 6ρSw)wS + rSwS

+ σ2(1 + 6ρSw)w + rw = 0 in R+ × [0,∞),

where w = uSS.
Applying the transformations w = v

ρS and x = lnS to the reaction-advection-
diffusion equation above and simplifying we get

vt +
σ2

2 (1 + 4v)vxx + 2σ2v2x +
σ2

2 (1 + 4v)vx + rvx = 0 in R× [0,∞). (3.11)

If we let v = V−1
4 then (3.11) reduces to equation (3.1).

Hence, substituting v = V−1
4 into (3.8) gives the solution to (3.11) as

v(x, t) = 1
4e

x0−(x−ct)
2 + 1

σ2 (c− r)− 1
4 (3.12)

for c, σ > 0, r, t ≥ 0, and x, x0 ∈ R. Substituting w = v
ρS and x = lnS into (3.12)

gives

uSS = 1
ρS

(

1
4

√

S0
S e

ct
2 + 1

σ2 (c− r)− 1
4

)

(3.13)

for ρ, c, S, σ > 0, and r, t ≥ 0. Since lnS0 = x0 ∈ R then S0 > 0.
We can rewrite equation (3.13) as

ρSuSS = 1
4

√

S0
S e

ct
2 + 1

σ2 (c− r)− 1
4 . (3.14)

By localizing boundary conditions we get limS→±∞uSS(S, t) = 0. Since

limS→±∞uSS(S, t) = limS→±∞
1√
S
= 0,

equation (3.14) becomes c = r + σ2

4 > 0 after simplifying.
Plugging this value of c into (3.13) we obtain

uSS =
√
S0

4ρS3/2 e

(

r+σ2/4
2

)

t
for ρ, S, S0, σ > 0, and r, t ≥ 0. (3.15)

Integrate (3.15) twice with respect to S. After a little algebra we get

u(S, t) = aS −
√
S0

ρ

(

√
Se

(

r+σ2/4
2

)

t
+

√
S0

4 e(r+σ2/4)t

)

(3.16)

for S, S0, σ, ρ > 0, r, t ≥ 0 and a ∈ R.
Substituting equation (3.16) into (2.5) and simplifying the results gives

a = 1. Since a = 1 equation (3.16) reduces to (3.9).
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Remark 3.0.3. From equation (3.9), it is clear that SuS
u is always greater

than one as in [2]. This shows that the option is always more volatile than the
stock.

4. The Greek Parameters

We obtain the delta of the call option u(S, t) by differentiating the solution (3.9)
with respect to the spatial variable S. Hence,

uS = ∂u
∂S = 1− 1

2ρ

√

S0
S e

(

r+σ2/4
2

)

t
for ρ, S, S0, σ > 0 and r, t ≥ 0.

When uS is differentiated with respect to S we obtain gamma as in equa-
tion (3.15).

The parameter theta is given by

ut =
∂u
∂t = − (r+σ2/4)

√
S0

2ρ

(

√
Se

(

r+σ2/4
2

)

t
+

√
S0

2 e(r+σ2/4)t

)

for ρ, S, S0, σ, t > 0 and r ≥ 0 when (3.9) is differentiated with respect to time
t. If the price of the asset does not move, the option price will change by theta
with time t.

Differentiating uSS with respect to S gives option speed as

uSSS = ∂3u
∂S3 = − 3

√
S0

8ρS5/2 e

(

r+σ2/4
2

)

t
for ρ, S, S0, σ > 0 and r, t ≥ 0.

Gamma is used by traders to estimate how much they will rehedge by if the
stock price moves. An option delta may change by more or less the amount the
traders have approximated the value of the stock price to change. If it is by
a large amount that the stock price moves, or the option nears the strike and
expiration, the delta becomes unreliable and hence the use of the speed.

When the solution (3.9) is differentiated with respect to σ we get the vega

of a call option u(S, t) as

∂u
∂σ = −σt

√
S0

4ρ

(

√
Se

(

r+σ2/4
2

)

t
+

√
S0
2 e(r+σ2/4)t

)

for ρ, S, S0, σ > 0 and r, t ≥ 0.
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The Greek parameter rho is obtained by differentiating (3.9) with respect
to the interest rate r to get

∂u
∂r = − t

√
S0

2ρ

(

√
Se

(

r+σ2/4
2

)

t
+

√
S0
2 e(r+σ2/4)t

)

for ρ, S, S0, σ, r > 0 and t ≥ 0.

5. Conclusion

We have studied the hedging of derivatives in illiquid markets. A model where
the implementation of a hedging strategy affects the price of the underlying
asset has been considered. Assuming the solution of a forward wave, a classi-
cal solution for the nonlinear Black-Scholes equation was found. The solution
obtained can be used for pricing a European call option at time t ≥ 0. This
solution supports the comments in [2] that the option is always more volatile
than the stock. All the risk parameters except Gamma are negative.

In conclusion, further research needs to be done to find solutions to arbi-
trary portfolio of options with non-single-signed gamma. Future work will also
involve solving the nonlinear Black-Scholes equation using the hyperbolic tan-
gent (tanh) method. We will also solve the Bakstein and Howison (2003) model
in future.
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